metadata
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
- template:sd-lora
widget:
- text: >-
spiral wave flower,minimalism,white_background,abstract,photoshop
generated abstract on a white background
output:
url: image_0.png
- text: >-
spiral wave flower,minimalism,white_background,abstract,photoshop
generated abstract on a white background
output:
url: image_1.png
- text: >-
spiral wave flower,minimalism,white_background,abstract,photoshop
generated abstract on a white background
output:
url: image_2.png
- text: >-
spiral wave flower,minimalism,white_background,abstract,photoshop
generated abstract on a white background
output:
url: image_3.png
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: >-
something,minimalism,white_background,abstract,photoshop generated abstract on
a white background
license: openrail++
SDXL LoRA DreamBooth - backnotprop/np_cr_model6
Model description
These are backnotprop/np_cr_model6 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
Download model
Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke
- LoRA: download
np_cr_model6.safetensors
here 💾.- Place it on your
models/Lora
folder. - On AUTOMATIC1111, load the LoRA by adding
<lora:np_cr_model6:1>
to your prompt. On ComfyUI just load it as a regular LoRA.
- Place it on your
- Embeddings: download
np_cr_model6_emb.safetensors
here 💾.- Place it on it on your
embeddings
folder - Use it by adding
np_cr_model6_emb
to your prompt. For example,something,minimalism,white_background,abstract,photoshop generated abstract on a white background
(you need both the LoRA and the embeddings as they were trained together for this LoRA)
- Place it on it on your
Use it with the 🧨 diffusers library
from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('backnotprop/np_cr_model6', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='backnotprop/np_cr_model6', filename='np_cr_model6_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=[], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
image = pipeline('spiral wave flower,minimalism,white_background,abstract,photoshop generated abstract on a white background').images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
Trigger words
To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:
to trigger concept TOK
→ use <s0><s1>
in your prompt
Details
All Files & versions.
The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.
LoRA for the text encoder was enabled. False.
Pivotal tuning was enabled: True.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.