metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- f1
widget:
- text: >-
Kerajaan bukannya memandai-mandai buat itu ini, sebaliknya yang
dilaksanakan adalah bagi penuhi permintaan atau cadangan diterima daripada
peringkat bawahan sendiri
- text: >-
mahathir mohamad demi kelangsungan karier politiknya lebih-lebih lagi
bekas perdana menteri itu masih lagi mempunyai pengikut yang taksub
- text: >-
@AINAMIR96 Bukan..kalau letak mmg lah melecur..ambik towel kecik..iron bg
panas..lepas tu tuam lah kat perut towel https://t.co/pAw4o5vr5I
- text: >-
Kebanyakan orang Cina yang kamu temui di sini akan beritahu kamu,
kebimbangan mereka tentang isu yang melanda negara.
- text: >-
WTB | WHAT TO BUY TAEIL BATU AKIK ( FIRE TRUCK ) dm aku yaa chagi kali aja
ada yg mau jual taeilnya ini bener https://t.co/el2UKgB3j4
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: f1
value: 0.608
name: F1
SetFit
This is a SetFit model that can be used for Text Classification. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
negative |
|
positive |
|
neutral |
|
Evaluation
Metrics
Label | F1 |
---|---|
all | 0.608 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("babysharkdododo/setfit-all-minilm-l6-v2-malay_en_cn_sentiment_analysis")
# Run inference
preds = model("Kebanyakan orang Cina yang kamu temui di sini akan beritahu kamu, kebimbangan mereka tentang isu yang melanda negara.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 16.598 | 58 |
Label | Training Sample Count |
---|---|
positive | 235 |
neutral | 77 |
negative | 188 |
Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.189 | - |
0.0052 | 50 | 0.3053 | - |
0.0104 | 100 | 0.2779 | - |
0.0156 | 150 | 0.4526 | - |
0.0208 | 200 | 0.3073 | - |
0.0261 | 250 | 0.4156 | - |
0.0313 | 300 | 0.3912 | - |
0.0365 | 350 | 0.2259 | - |
0.0417 | 400 | 0.2445 | - |
0.0004 | 1 | 0.3311 | - |
0.0208 | 50 | 0.3569 | - |
0.0417 | 100 | 0.2946 | - |
0.0625 | 150 | 0.3397 | - |
0.0008 | 1 | 0.3177 | - |
0.0417 | 50 | 0.2764 | - |
0.0833 | 100 | 0.226 | - |
0.125 | 150 | 0.2649 | - |
0.1667 | 200 | 0.282 | - |
0.2083 | 250 | 0.2438 | - |
0.25 | 300 | 0.2425 | - |
0.2917 | 350 | 0.2555 | - |
0.3333 | 400 | 0.2266 | - |
0.375 | 450 | 0.14 | - |
0.4167 | 500 | 0.1446 | - |
0.4583 | 550 | 0.152 | - |
0.5 | 600 | 0.184 | - |
0.5417 | 650 | 0.095 | - |
0.5833 | 700 | 0.1358 | - |
0.625 | 750 | 0.0859 | - |
0.6667 | 800 | 0.0756 | - |
0.7083 | 850 | 0.0622 | - |
0.75 | 900 | 0.0719 | - |
0.7917 | 950 | 0.0681 | - |
0.8333 | 1000 | 0.0684 | - |
0.875 | 1050 | 0.0356 | - |
0.9167 | 1100 | 0.0233 | - |
0.9583 | 1150 | 0.0126 | - |
1.0 | 1200 | 0.0022 | 0.3748 |
1.0417 | 1250 | 0.0095 | - |
1.0833 | 1300 | 0.0095 | - |
1.125 | 1350 | 0.0376 | - |
1.1667 | 1400 | 0.0075 | - |
1.2083 | 1450 | 0.0075 | - |
1.25 | 1500 | 0.0142 | - |
1.2917 | 1550 | 0.0113 | - |
1.3333 | 1600 | 0.0022 | - |
1.375 | 1650 | 0.0006 | - |
1.4167 | 1700 | 0.0005 | - |
1.4583 | 1750 | 0.0005 | - |
1.5 | 1800 | 0.0003 | - |
1.5417 | 1850 | 0.0021 | - |
1.5833 | 1900 | 0.0004 | - |
1.625 | 1950 | 0.0006 | - |
1.6667 | 2000 | 0.001 | - |
1.7083 | 2050 | 0.0002 | - |
1.75 | 2100 | 0.0002 | - |
1.7917 | 2150 | 0.0002 | - |
1.8333 | 2200 | 0.0002 | - |
1.875 | 2250 | 0.0059 | - |
1.9167 | 2300 | 0.0002 | - |
1.9583 | 2350 | 0.0005 | - |
2.0 | 2400 | 0.0001 | 0.3806 |
2.0417 | 2450 | 0.0001 | - |
2.0833 | 2500 | 0.0012 | - |
2.125 | 2550 | 0.0001 | - |
2.1667 | 2600 | 0.0002 | - |
2.2083 | 2650 | 0.0002 | - |
2.25 | 2700 | 0.0001 | - |
2.2917 | 2750 | 0.0011 | - |
2.3333 | 2800 | 0.0002 | - |
2.375 | 2850 | 0.0001 | - |
2.4167 | 2900 | 0.0003 | - |
2.4583 | 2950 | 0.0007 | - |
2.5 | 3000 | 0.0001 | - |
2.5417 | 3050 | 0.0001 | - |
2.5833 | 3100 | 0.0001 | - |
2.625 | 3150 | 0.0001 | - |
2.6667 | 3200 | 0.0001 | - |
2.7083 | 3250 | 0.0001 | - |
2.75 | 3300 | 0.0001 | - |
2.7917 | 3350 | 0.0002 | - |
2.8333 | 3400 | 0.0001 | - |
2.875 | 3450 | 0.0001 | - |
2.9167 | 3500 | 0.0001 | - |
2.9583 | 3550 | 0.0001 | - |
3.0 | 3600 | 0.0001 | 0.4004 |
3.0417 | 3650 | 0.0001 | - |
3.0833 | 3700 | 0.0001 | - |
3.125 | 3750 | 0.0001 | - |
3.1667 | 3800 | 0.0001 | - |
3.2083 | 3850 | 0.0002 | - |
3.25 | 3900 | 0.0001 | - |
3.2917 | 3950 | 0.0001 | - |
3.3333 | 4000 | 0.0005 | - |
3.375 | 4050 | 0.0001 | - |
3.4167 | 4100 | 0.0001 | - |
3.4583 | 4150 | 0.0001 | - |
3.5 | 4200 | 0.0004 | - |
3.5417 | 4250 | 0.0 | - |
3.5833 | 4300 | 0.0001 | - |
3.625 | 4350 | 0.0001 | - |
3.6667 | 4400 | 0.0001 | - |
3.7083 | 4450 | 0.0001 | - |
3.75 | 4500 | 0.0 | - |
3.7917 | 4550 | 0.0 | - |
3.8333 | 4600 | 0.0 | - |
3.875 | 4650 | 0.0001 | - |
3.9167 | 4700 | 0.0001 | - |
3.9583 | 4750 | 0.0001 | - |
4.0 | 4800 | 0.0 | 0.4004 |
4.0417 | 4850 | 0.0001 | - |
4.0833 | 4900 | 0.0003 | - |
4.125 | 4950 | 0.0 | - |
4.1667 | 5000 | 0.0001 | - |
4.2083 | 5050 | 0.0001 | - |
4.25 | 5100 | 0.0 | - |
4.2917 | 5150 | 0.0003 | - |
4.3333 | 5200 | 0.0001 | - |
4.375 | 5250 | 0.0 | - |
4.4167 | 5300 | 0.0 | - |
4.4583 | 5350 | 0.0002 | - |
4.5 | 5400 | 0.0 | - |
4.5417 | 5450 | 0.0001 | - |
4.5833 | 5500 | 0.0001 | - |
4.625 | 5550 | 0.0 | - |
4.6667 | 5600 | 0.0006 | - |
4.7083 | 5650 | 0.0 | - |
4.75 | 5700 | 0.0 | - |
4.7917 | 5750 | 0.0 | - |
4.8333 | 5800 | 0.0 | - |
4.875 | 5850 | 0.0 | - |
4.9167 | 5900 | 0.0 | - |
4.9583 | 5950 | 0.0 | - |
5.0 | 6000 | 0.0001 | 0.391 |
5.0417 | 6050 | 0.0 | - |
5.0833 | 6100 | 0.0001 | - |
5.125 | 6150 | 0.0 | - |
5.1667 | 6200 | 0.0 | - |
5.2083 | 6250 | 0.0 | - |
5.25 | 6300 | 0.0 | - |
5.2917 | 6350 | 0.0 | - |
5.3333 | 6400 | 0.0 | - |
5.375 | 6450 | 0.0 | - |
5.4167 | 6500 | 0.0 | - |
5.4583 | 6550 | 0.0 | - |
5.5 | 6600 | 0.0001 | - |
5.5417 | 6650 | 0.0 | - |
5.5833 | 6700 | 0.0 | - |
5.625 | 6750 | 0.0 | - |
5.6667 | 6800 | 0.0 | - |
5.7083 | 6850 | 0.0 | - |
5.75 | 6900 | 0.0001 | - |
5.7917 | 6950 | 0.0 | - |
5.8333 | 7000 | 0.0001 | - |
5.875 | 7050 | 0.0 | - |
5.9167 | 7100 | 0.0 | - |
5.9583 | 7150 | 0.0 | - |
6.0 | 7200 | 0.0001 | 0.4026 |
6.0417 | 7250 | 0.0 | - |
6.0833 | 7300 | 0.0 | - |
6.125 | 7350 | 0.0 | - |
6.1667 | 7400 | 0.0 | - |
6.2083 | 7450 | 0.0 | - |
6.25 | 7500 | 0.0 | - |
6.2917 | 7550 | 0.0 | - |
6.3333 | 7600 | 0.0 | - |
6.375 | 7650 | 0.0 | - |
6.4167 | 7700 | 0.0 | - |
6.4583 | 7750 | 0.0 | - |
6.5 | 7800 | 0.0 | - |
6.5417 | 7850 | 0.0 | - |
6.5833 | 7900 | 0.0 | - |
6.625 | 7950 | 0.0 | - |
6.6667 | 8000 | 0.0001 | - |
6.7083 | 8050 | 0.0005 | - |
6.75 | 8100 | 0.0063 | - |
6.7917 | 8150 | 0.0 | - |
6.8333 | 8200 | 0.0 | - |
6.875 | 8250 | 0.0 | - |
6.9167 | 8300 | 0.0 | - |
6.9583 | 8350 | 0.0 | - |
7.0 | 8400 | 0.0 | 0.4018 |
7.0417 | 8450 | 0.0 | - |
7.0833 | 8500 | 0.0 | - |
7.125 | 8550 | 0.0 | - |
7.1667 | 8600 | 0.0 | - |
7.2083 | 8650 | 0.0 | - |
7.25 | 8700 | 0.0 | - |
7.2917 | 8750 | 0.0 | - |
7.3333 | 8800 | 0.0 | - |
7.375 | 8850 | 0.0 | - |
7.4167 | 8900 | 0.0 | - |
7.4583 | 8950 | 0.0 | - |
7.5 | 9000 | 0.0 | - |
7.5417 | 9050 | 0.0 | - |
7.5833 | 9100 | 0.0 | - |
7.625 | 9150 | 0.0 | - |
7.6667 | 9200 | 0.0 | - |
7.7083 | 9250 | 0.0 | - |
7.75 | 9300 | 0.0 | - |
7.7917 | 9350 | 0.0 | - |
7.8333 | 9400 | 0.0 | - |
7.875 | 9450 | 0.0 | - |
7.9167 | 9500 | 0.0 | - |
7.9583 | 9550 | 0.0 | - |
8.0 | 9600 | 0.0 | 0.4001 |
8.0417 | 9650 | 0.0 | - |
8.0833 | 9700 | 0.0 | - |
8.125 | 9750 | 0.0 | - |
Framework Versions
- Python: 3.10.14
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.2.2
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}