ADL_Gemma / README.md
b09501048's picture
End of training
efeb284 verified
|
raw
history blame
2.23 kB
---
base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo
library_name: peft
license: gemma
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: ADL_Gemma
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/djengo890-national-taiwan-university/ADL_Gemma/runs/f98xwg6l)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/djengo890-national-taiwan-university/ADL_Gemma/runs/f98xwg6l)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/djengo890-national-taiwan-university/ADL_Gemma/runs/f98xwg6l)
# ADL_Gemma
This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4280
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5838 | 1.0 | 1250 | 1.4726 |
| 1.5041 | 2.0 | 2500 | 1.4400 |
| 1.4579 | 3.0 | 3750 | 1.4292 |
| 1.4483 | 4.0 | 5000 | 1.4280 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.45.1
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.20.1