librarian-bot's picture
Librarian Bot: Add base_model information to model
27d25e1
|
raw
history blame
2.23 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - wikiann
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: bert-base-multilingual-cased
model-index:
  - name: mbert-finetuned-azerbaijani-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: wikiann
          type: wikiann
          args: az
        metrics:
          - type: precision
            value: 0.8898541731306236
            name: Precision
          - type: recall
            value: 0.915416533673795
            name: Recall
          - type: f1
            value: 0.9024543738200126
            name: F1
          - type: accuracy
            value: 0.966948310139165
            name: Accuracy

mbert-finetuned-azerbaijani-ner

This model is a fine-tuned version of bert-base-multilingual-cased on the wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1385
  • Precision: 0.8899
  • Recall: 0.9154
  • F1: 0.9025
  • Accuracy: 0.9669

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2928 1.0 625 0.1415 0.8584 0.8918 0.8748 0.9595
0.1254 2.0 1250 0.1335 0.8875 0.9119 0.8996 0.9637
0.077 3.0 1875 0.1385 0.8899 0.9154 0.9025 0.9669

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.6