2.18 kB
--- | |
license: apache-2.0 | |
tags: | |
- generated_from_trainer | |
datasets: | |
- wikiann | |
metrics: | |
- precision | |
- recall | |
- f1 | |
- accuracy | |
model-index: | |
- name: mbert-finetuned-azerbaijani-ner | |
results: | |
- task: | |
name: Token Classification | |
type: token-classification | |
dataset: | |
name: wikiann | |
type: wikiann | |
args: az | |
metrics: | |
- name: Precision | |
type: precision | |
value: 0.8898541731306236 | |
- name: Recall | |
type: recall | |
value: 0.915416533673795 | |
- name: F1 | |
type: f1 | |
value: 0.9024543738200126 | |
- name: Accuracy | |
type: accuracy | |
value: 0.966948310139165 | |
--- | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# mbert-finetuned-azerbaijani-ner | |
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.1385 | |
- Precision: 0.8899 | |
- Recall: 0.9154 | |
- F1: 0.9025 | |
- Accuracy: 0.9669 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 16 | |
- eval_batch_size: 16 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | | |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | |
| 0.2928 | 1.0 | 625 | 0.1415 | 0.8584 | 0.8918 | 0.8748 | 0.9595 | | |
| 0.1254 | 2.0 | 1250 | 0.1335 | 0.8875 | 0.9119 | 0.8996 | 0.9637 | | |
| 0.077 | 3.0 | 1875 | 0.1385 | 0.8899 | 0.9154 | 0.9025 | 0.9669 | | |
### Framework versions | |
- Transformers 4.16.2 | |
- Pytorch 1.10.0+cu111 | |
- Datasets 1.18.3 | |
- Tokenizers 0.11.6 | |