extra2
Browse files- checkpoint-6341/generation_config.json +7 -0
- checkpoint-6341/latest +1 -0
- checkpoint-6341/model.safetensors.index.json +298 -0
- checkpoint-6341/special_tokens_map.json +24 -0
- checkpoint-6341/tokenizer.model +3 -0
- checkpoint-6341/tokenizer_config.json +43 -0
- checkpoint-6341/trainer_state.json +1758 -0
- checkpoint-6341/training_args.bin +3 -0
- checkpoint-6341/zero_to_fp32.py +604 -0
checkpoint-6341/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.42.3"
|
7 |
+
}
|
checkpoint-6341/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step6341
|
checkpoint-6341/model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5403120640
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
296 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
297 |
+
}
|
298 |
+
}
|
checkpoint-6341/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
checkpoint-6341/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
checkpoint-6341/tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": false,
|
35 |
+
"model_max_length": 2048,
|
36 |
+
"pad_token": "</s>",
|
37 |
+
"padding_side": "right",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
checkpoint-6341/trainer_state.json
ADDED
@@ -0,0 +1,1758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 200,
|
6 |
+
"global_step": 6341,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.004731114966093676,
|
13 |
+
"grad_norm": 0.9585382342338562,
|
14 |
+
"learning_rate": 7.235790156711095e-05,
|
15 |
+
"loss": 1.19,
|
16 |
+
"step": 30
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.009462229932187352,
|
20 |
+
"grad_norm": 0.9438452124595642,
|
21 |
+
"learning_rate": 8.817139967814685e-05,
|
22 |
+
"loss": 1.0589,
|
23 |
+
"step": 60
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.014193344898281028,
|
27 |
+
"grad_norm": 0.9442492723464966,
|
28 |
+
"learning_rate": 9.722413360750843e-05,
|
29 |
+
"loss": 1.0764,
|
30 |
+
"step": 90
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.018924459864374705,
|
34 |
+
"grad_norm": 0.8840267658233643,
|
35 |
+
"learning_rate": 9.994621104255655e-05,
|
36 |
+
"loss": 1.0847,
|
37 |
+
"step": 120
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.02365557483046838,
|
41 |
+
"grad_norm": 0.8207218050956726,
|
42 |
+
"learning_rate": 9.985445340927068e-05,
|
43 |
+
"loss": 1.0912,
|
44 |
+
"step": 150
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.028386689796562056,
|
48 |
+
"grad_norm": 0.8883314728736877,
|
49 |
+
"learning_rate": 9.975953171966461e-05,
|
50 |
+
"loss": 1.0608,
|
51 |
+
"step": 180
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.03154076644062451,
|
55 |
+
"eval_loss": 1.2097724676132202,
|
56 |
+
"eval_runtime": 3.756,
|
57 |
+
"eval_samples_per_second": 26.89,
|
58 |
+
"eval_steps_per_second": 3.461,
|
59 |
+
"step": 200
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.03311780476265573,
|
63 |
+
"grad_norm": 0.7577874064445496,
|
64 |
+
"learning_rate": 9.966461003005853e-05,
|
65 |
+
"loss": 1.0802,
|
66 |
+
"step": 210
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.03784891972874941,
|
70 |
+
"grad_norm": 1.4911932945251465,
|
71 |
+
"learning_rate": 9.956968834045246e-05,
|
72 |
+
"loss": 1.0397,
|
73 |
+
"step": 240
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.04258003469484308,
|
77 |
+
"grad_norm": 0.8236317038536072,
|
78 |
+
"learning_rate": 9.947476665084638e-05,
|
79 |
+
"loss": 1.0575,
|
80 |
+
"step": 270
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.04731114966093676,
|
84 |
+
"grad_norm": 0.7883521318435669,
|
85 |
+
"learning_rate": 9.937984496124031e-05,
|
86 |
+
"loss": 1.0369,
|
87 |
+
"step": 300
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.05204226462703044,
|
91 |
+
"grad_norm": 0.7798565626144409,
|
92 |
+
"learning_rate": 9.928492327163424e-05,
|
93 |
+
"loss": 1.0354,
|
94 |
+
"step": 330
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.05677337959312411,
|
98 |
+
"grad_norm": 0.7784315943717957,
|
99 |
+
"learning_rate": 9.919000158202817e-05,
|
100 |
+
"loss": 1.0341,
|
101 |
+
"step": 360
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.06150449455921779,
|
105 |
+
"grad_norm": 0.836300790309906,
|
106 |
+
"learning_rate": 9.909507989242209e-05,
|
107 |
+
"loss": 1.0272,
|
108 |
+
"step": 390
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.06308153288124901,
|
112 |
+
"eval_loss": 1.1889104843139648,
|
113 |
+
"eval_runtime": 3.7553,
|
114 |
+
"eval_samples_per_second": 26.895,
|
115 |
+
"eval_steps_per_second": 3.462,
|
116 |
+
"step": 400
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.06623560952531146,
|
120 |
+
"grad_norm": 0.7245925664901733,
|
121 |
+
"learning_rate": 9.900015820281602e-05,
|
122 |
+
"loss": 1.0256,
|
123 |
+
"step": 420
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.07096672449140515,
|
127 |
+
"grad_norm": 0.8321049213409424,
|
128 |
+
"learning_rate": 9.890523651320994e-05,
|
129 |
+
"loss": 1.0332,
|
130 |
+
"step": 450
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.07569783945749882,
|
134 |
+
"grad_norm": 0.7657173275947571,
|
135 |
+
"learning_rate": 9.881031482360387e-05,
|
136 |
+
"loss": 1.0221,
|
137 |
+
"step": 480
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.08042895442359249,
|
141 |
+
"grad_norm": 0.7464463114738464,
|
142 |
+
"learning_rate": 9.871539313399779e-05,
|
143 |
+
"loss": 0.9911,
|
144 |
+
"step": 510
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.08516006938968616,
|
148 |
+
"grad_norm": 0.7290617227554321,
|
149 |
+
"learning_rate": 9.862047144439172e-05,
|
150 |
+
"loss": 1.0258,
|
151 |
+
"step": 540
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.08989118435577985,
|
155 |
+
"grad_norm": 0.7311350703239441,
|
156 |
+
"learning_rate": 9.852554975478564e-05,
|
157 |
+
"loss": 1.0165,
|
158 |
+
"step": 570
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.09462229932187352,
|
162 |
+
"grad_norm": 0.8087915182113647,
|
163 |
+
"learning_rate": 9.843062806517957e-05,
|
164 |
+
"loss": 0.9716,
|
165 |
+
"step": 600
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.09462229932187352,
|
169 |
+
"eval_loss": 1.1471492052078247,
|
170 |
+
"eval_runtime": 3.7536,
|
171 |
+
"eval_samples_per_second": 26.907,
|
172 |
+
"eval_steps_per_second": 3.463,
|
173 |
+
"step": 600
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 0.09935341428796719,
|
177 |
+
"grad_norm": 0.7442970275878906,
|
178 |
+
"learning_rate": 9.833570637557348e-05,
|
179 |
+
"loss": 0.9747,
|
180 |
+
"step": 630
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 0.10408452925406088,
|
184 |
+
"grad_norm": 0.9510965347290039,
|
185 |
+
"learning_rate": 9.824078468596742e-05,
|
186 |
+
"loss": 0.9582,
|
187 |
+
"step": 660
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"epoch": 0.10881564422015455,
|
191 |
+
"grad_norm": 0.6995567083358765,
|
192 |
+
"learning_rate": 9.814586299636133e-05,
|
193 |
+
"loss": 1.0118,
|
194 |
+
"step": 690
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.11354675918624822,
|
198 |
+
"grad_norm": 0.9319436550140381,
|
199 |
+
"learning_rate": 9.805094130675526e-05,
|
200 |
+
"loss": 0.9815,
|
201 |
+
"step": 720
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.11827787415234191,
|
205 |
+
"grad_norm": 0.7033783793449402,
|
206 |
+
"learning_rate": 9.795601961714918e-05,
|
207 |
+
"loss": 0.9738,
|
208 |
+
"step": 750
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 0.12300898911843558,
|
212 |
+
"grad_norm": 0.6606217622756958,
|
213 |
+
"learning_rate": 9.786109792754311e-05,
|
214 |
+
"loss": 0.961,
|
215 |
+
"step": 780
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 0.12616306576249803,
|
219 |
+
"eval_loss": 1.125948190689087,
|
220 |
+
"eval_runtime": 3.7557,
|
221 |
+
"eval_samples_per_second": 26.892,
|
222 |
+
"eval_steps_per_second": 3.461,
|
223 |
+
"step": 800
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"epoch": 0.12774010408452927,
|
227 |
+
"grad_norm": 0.9087960124015808,
|
228 |
+
"learning_rate": 9.776617623793703e-05,
|
229 |
+
"loss": 0.9734,
|
230 |
+
"step": 810
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.13247121905062292,
|
234 |
+
"grad_norm": 0.7387025952339172,
|
235 |
+
"learning_rate": 9.767125454833097e-05,
|
236 |
+
"loss": 0.9605,
|
237 |
+
"step": 840
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.1372023340167166,
|
241 |
+
"grad_norm": 0.7939543724060059,
|
242 |
+
"learning_rate": 9.757633285872489e-05,
|
243 |
+
"loss": 0.952,
|
244 |
+
"step": 870
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"epoch": 0.1419334489828103,
|
248 |
+
"grad_norm": 1.1417864561080933,
|
249 |
+
"learning_rate": 9.748141116911882e-05,
|
250 |
+
"loss": 0.9113,
|
251 |
+
"step": 900
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.14666456394890395,
|
255 |
+
"grad_norm": 0.7591778635978699,
|
256 |
+
"learning_rate": 9.738648947951274e-05,
|
257 |
+
"loss": 0.9565,
|
258 |
+
"step": 930
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"epoch": 0.15139567891499764,
|
262 |
+
"grad_norm": 0.759545087814331,
|
263 |
+
"learning_rate": 9.729156778990667e-05,
|
264 |
+
"loss": 0.9401,
|
265 |
+
"step": 960
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"epoch": 0.1561267938810913,
|
269 |
+
"grad_norm": 0.700552761554718,
|
270 |
+
"learning_rate": 9.719664610030059e-05,
|
271 |
+
"loss": 0.9447,
|
272 |
+
"step": 990
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.15770383220312253,
|
276 |
+
"eval_loss": 1.0677810907363892,
|
277 |
+
"eval_runtime": 3.7551,
|
278 |
+
"eval_samples_per_second": 26.897,
|
279 |
+
"eval_steps_per_second": 3.462,
|
280 |
+
"step": 1000
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"epoch": 0.16085790884718498,
|
284 |
+
"grad_norm": 0.6673519015312195,
|
285 |
+
"learning_rate": 9.710172441069452e-05,
|
286 |
+
"loss": 0.8919,
|
287 |
+
"step": 1020
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 0.16558902381327867,
|
291 |
+
"grad_norm": 0.8046931028366089,
|
292 |
+
"learning_rate": 9.700680272108844e-05,
|
293 |
+
"loss": 0.9136,
|
294 |
+
"step": 1050
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 0.17032013877937233,
|
298 |
+
"grad_norm": 0.7277413606643677,
|
299 |
+
"learning_rate": 9.691188103148237e-05,
|
300 |
+
"loss": 0.9001,
|
301 |
+
"step": 1080
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 0.175051253745466,
|
305 |
+
"grad_norm": 0.661359429359436,
|
306 |
+
"learning_rate": 9.681695934187629e-05,
|
307 |
+
"loss": 0.9119,
|
308 |
+
"step": 1110
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.1797823687115597,
|
312 |
+
"grad_norm": 0.7349006533622742,
|
313 |
+
"learning_rate": 9.672203765227022e-05,
|
314 |
+
"loss": 0.8825,
|
315 |
+
"step": 1140
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.18451348367765336,
|
319 |
+
"grad_norm": 0.7114729285240173,
|
320 |
+
"learning_rate": 9.662711596266414e-05,
|
321 |
+
"loss": 0.8872,
|
322 |
+
"step": 1170
|
323 |
+
},
|
324 |
+
{
|
325 |
+
"epoch": 0.18924459864374704,
|
326 |
+
"grad_norm": 0.6496574282646179,
|
327 |
+
"learning_rate": 9.653219427305807e-05,
|
328 |
+
"loss": 0.8809,
|
329 |
+
"step": 1200
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.18924459864374704,
|
333 |
+
"eval_loss": 1.0253973007202148,
|
334 |
+
"eval_runtime": 3.7532,
|
335 |
+
"eval_samples_per_second": 26.91,
|
336 |
+
"eval_steps_per_second": 3.464,
|
337 |
+
"step": 1200
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"epoch": 0.19397571360984073,
|
341 |
+
"grad_norm": 0.6576619744300842,
|
342 |
+
"learning_rate": 9.643727258345198e-05,
|
343 |
+
"loss": 0.876,
|
344 |
+
"step": 1230
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.19870682857593439,
|
348 |
+
"grad_norm": 0.666749119758606,
|
349 |
+
"learning_rate": 9.634235089384591e-05,
|
350 |
+
"loss": 0.8877,
|
351 |
+
"step": 1260
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.20343794354202807,
|
355 |
+
"grad_norm": 0.7769750952720642,
|
356 |
+
"learning_rate": 9.624742920423983e-05,
|
357 |
+
"loss": 0.8894,
|
358 |
+
"step": 1290
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"epoch": 0.20816905850812176,
|
362 |
+
"grad_norm": 0.6562801599502563,
|
363 |
+
"learning_rate": 9.615250751463376e-05,
|
364 |
+
"loss": 0.8912,
|
365 |
+
"step": 1320
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 0.21290017347421542,
|
369 |
+
"grad_norm": 0.6531364917755127,
|
370 |
+
"learning_rate": 9.605758582502768e-05,
|
371 |
+
"loss": 0.875,
|
372 |
+
"step": 1350
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"epoch": 0.2176312884403091,
|
376 |
+
"grad_norm": 0.6414660811424255,
|
377 |
+
"learning_rate": 9.596266413542163e-05,
|
378 |
+
"loss": 0.8721,
|
379 |
+
"step": 1380
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"epoch": 0.22078536508437155,
|
383 |
+
"eval_loss": 1.0128834247589111,
|
384 |
+
"eval_runtime": 3.7539,
|
385 |
+
"eval_samples_per_second": 26.906,
|
386 |
+
"eval_steps_per_second": 3.463,
|
387 |
+
"step": 1400
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.2223624034064028,
|
391 |
+
"grad_norm": 0.8413099646568298,
|
392 |
+
"learning_rate": 9.586774244581554e-05,
|
393 |
+
"loss": 0.8807,
|
394 |
+
"step": 1410
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.22709351837249644,
|
398 |
+
"grad_norm": 0.6748294830322266,
|
399 |
+
"learning_rate": 9.577282075620947e-05,
|
400 |
+
"loss": 0.8245,
|
401 |
+
"step": 1440
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.23182463333859013,
|
405 |
+
"grad_norm": 0.7067525386810303,
|
406 |
+
"learning_rate": 9.567789906660339e-05,
|
407 |
+
"loss": 0.8767,
|
408 |
+
"step": 1470
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.23655574830468382,
|
412 |
+
"grad_norm": 1.074791431427002,
|
413 |
+
"learning_rate": 9.558297737699732e-05,
|
414 |
+
"loss": 0.8856,
|
415 |
+
"step": 1500
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.24128686327077747,
|
419 |
+
"grad_norm": 0.7461240887641907,
|
420 |
+
"learning_rate": 9.548805568739124e-05,
|
421 |
+
"loss": 0.8759,
|
422 |
+
"step": 1530
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.24601797823687116,
|
426 |
+
"grad_norm": 0.6231616139411926,
|
427 |
+
"learning_rate": 9.539313399778517e-05,
|
428 |
+
"loss": 0.837,
|
429 |
+
"step": 1560
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.25074909320296485,
|
433 |
+
"grad_norm": 0.7053641080856323,
|
434 |
+
"learning_rate": 9.529821230817909e-05,
|
435 |
+
"loss": 0.8763,
|
436 |
+
"step": 1590
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.25232613152499606,
|
440 |
+
"eval_loss": 0.9505324959754944,
|
441 |
+
"eval_runtime": 3.7563,
|
442 |
+
"eval_samples_per_second": 26.888,
|
443 |
+
"eval_steps_per_second": 3.461,
|
444 |
+
"step": 1600
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.25548020816905853,
|
448 |
+
"grad_norm": 0.6484207510948181,
|
449 |
+
"learning_rate": 9.520329061857302e-05,
|
450 |
+
"loss": 0.8787,
|
451 |
+
"step": 1620
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.26021132313515216,
|
455 |
+
"grad_norm": 0.5929827094078064,
|
456 |
+
"learning_rate": 9.510836892896694e-05,
|
457 |
+
"loss": 0.844,
|
458 |
+
"step": 1650
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.26494243810124585,
|
462 |
+
"grad_norm": 0.6840829849243164,
|
463 |
+
"learning_rate": 9.501344723936087e-05,
|
464 |
+
"loss": 0.8492,
|
465 |
+
"step": 1680
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.26967355306733953,
|
469 |
+
"grad_norm": 0.7365448474884033,
|
470 |
+
"learning_rate": 9.491852554975479e-05,
|
471 |
+
"loss": 0.8584,
|
472 |
+
"step": 1710
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.2744046680334332,
|
476 |
+
"grad_norm": 0.6528182029724121,
|
477 |
+
"learning_rate": 9.482360386014872e-05,
|
478 |
+
"loss": 0.8346,
|
479 |
+
"step": 1740
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.2791357829995269,
|
483 |
+
"grad_norm": 0.6200223565101624,
|
484 |
+
"learning_rate": 9.472868217054263e-05,
|
485 |
+
"loss": 0.8008,
|
486 |
+
"step": 1770
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.2838668979656206,
|
490 |
+
"grad_norm": 0.7503982186317444,
|
491 |
+
"learning_rate": 9.463376048093657e-05,
|
492 |
+
"loss": 0.8197,
|
493 |
+
"step": 1800
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.2838668979656206,
|
497 |
+
"eval_loss": 0.9286572933197021,
|
498 |
+
"eval_runtime": 3.7535,
|
499 |
+
"eval_samples_per_second": 26.908,
|
500 |
+
"eval_steps_per_second": 3.463,
|
501 |
+
"step": 1800
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 0.2885980129317142,
|
505 |
+
"grad_norm": 0.6671140193939209,
|
506 |
+
"learning_rate": 9.453883879133048e-05,
|
507 |
+
"loss": 0.8405,
|
508 |
+
"step": 1830
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 0.2933291278978079,
|
512 |
+
"grad_norm": 0.7057023048400879,
|
513 |
+
"learning_rate": 9.444391710172441e-05,
|
514 |
+
"loss": 0.7822,
|
515 |
+
"step": 1860
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.2980602428639016,
|
519 |
+
"grad_norm": 0.8120527267456055,
|
520 |
+
"learning_rate": 9.434899541211833e-05,
|
521 |
+
"loss": 0.8416,
|
522 |
+
"step": 1890
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.3027913578299953,
|
526 |
+
"grad_norm": 0.622718334197998,
|
527 |
+
"learning_rate": 9.425407372251228e-05,
|
528 |
+
"loss": 0.8174,
|
529 |
+
"step": 1920
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 0.30752247279608896,
|
533 |
+
"grad_norm": 0.6605896353721619,
|
534 |
+
"learning_rate": 9.41591520329062e-05,
|
535 |
+
"loss": 0.8003,
|
536 |
+
"step": 1950
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.3122535877621826,
|
540 |
+
"grad_norm": 0.7473495006561279,
|
541 |
+
"learning_rate": 9.406423034330012e-05,
|
542 |
+
"loss": 0.798,
|
543 |
+
"step": 1980
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 0.31540766440624507,
|
547 |
+
"eval_loss": 0.8976284861564636,
|
548 |
+
"eval_runtime": 3.7537,
|
549 |
+
"eval_samples_per_second": 26.907,
|
550 |
+
"eval_steps_per_second": 3.463,
|
551 |
+
"step": 2000
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.3169847027282763,
|
555 |
+
"grad_norm": 0.7177520394325256,
|
556 |
+
"learning_rate": 9.396930865369404e-05,
|
557 |
+
"loss": 0.8168,
|
558 |
+
"step": 2010
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 0.32171581769436997,
|
562 |
+
"grad_norm": 0.7600869536399841,
|
563 |
+
"learning_rate": 9.387438696408797e-05,
|
564 |
+
"loss": 0.7918,
|
565 |
+
"step": 2040
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 0.32644693266046365,
|
569 |
+
"grad_norm": 0.7001503109931946,
|
570 |
+
"learning_rate": 9.377946527448189e-05,
|
571 |
+
"loss": 0.7906,
|
572 |
+
"step": 2070
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.33117804762655734,
|
576 |
+
"grad_norm": 0.6279382705688477,
|
577 |
+
"learning_rate": 9.368454358487582e-05,
|
578 |
+
"loss": 0.7624,
|
579 |
+
"step": 2100
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.335909162592651,
|
583 |
+
"grad_norm": 0.7481889128684998,
|
584 |
+
"learning_rate": 9.358962189526974e-05,
|
585 |
+
"loss": 0.7849,
|
586 |
+
"step": 2130
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 0.34064027755874465,
|
590 |
+
"grad_norm": 0.6797828078269958,
|
591 |
+
"learning_rate": 9.349470020566367e-05,
|
592 |
+
"loss": 0.7899,
|
593 |
+
"step": 2160
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.34537139252483834,
|
597 |
+
"grad_norm": 0.6929941177368164,
|
598 |
+
"learning_rate": 9.339977851605759e-05,
|
599 |
+
"loss": 0.7703,
|
600 |
+
"step": 2190
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.3469484308468696,
|
604 |
+
"eval_loss": 0.8858568072319031,
|
605 |
+
"eval_runtime": 3.7538,
|
606 |
+
"eval_samples_per_second": 26.906,
|
607 |
+
"eval_steps_per_second": 3.463,
|
608 |
+
"step": 2200
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.350102507490932,
|
612 |
+
"grad_norm": 0.698906660079956,
|
613 |
+
"learning_rate": 9.330485682645152e-05,
|
614 |
+
"loss": 0.7724,
|
615 |
+
"step": 2220
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.3548336224570257,
|
619 |
+
"grad_norm": 0.779211163520813,
|
620 |
+
"learning_rate": 9.320993513684544e-05,
|
621 |
+
"loss": 0.7875,
|
622 |
+
"step": 2250
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 0.3595647374231194,
|
626 |
+
"grad_norm": 0.7313475608825684,
|
627 |
+
"learning_rate": 9.311817750355957e-05,
|
628 |
+
"loss": 0.794,
|
629 |
+
"step": 2280
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.3642958523892131,
|
633 |
+
"grad_norm": 0.6143506169319153,
|
634 |
+
"learning_rate": 9.30232558139535e-05,
|
635 |
+
"loss": 0.7742,
|
636 |
+
"step": 2310
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.3690269673553067,
|
640 |
+
"grad_norm": 0.6775010824203491,
|
641 |
+
"learning_rate": 9.292833412434741e-05,
|
642 |
+
"loss": 0.7822,
|
643 |
+
"step": 2340
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 0.3737580823214004,
|
647 |
+
"grad_norm": 0.7151722311973572,
|
648 |
+
"learning_rate": 9.283341243474134e-05,
|
649 |
+
"loss": 0.7617,
|
650 |
+
"step": 2370
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.3784891972874941,
|
654 |
+
"grad_norm": 0.6855128407478333,
|
655 |
+
"learning_rate": 9.273849074513526e-05,
|
656 |
+
"loss": 0.7668,
|
657 |
+
"step": 2400
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.3784891972874941,
|
661 |
+
"eval_loss": 0.8862702250480652,
|
662 |
+
"eval_runtime": 3.7541,
|
663 |
+
"eval_samples_per_second": 26.904,
|
664 |
+
"eval_steps_per_second": 3.463,
|
665 |
+
"step": 2400
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 0.38322031225358777,
|
669 |
+
"grad_norm": 0.743325412273407,
|
670 |
+
"learning_rate": 9.26435690555292e-05,
|
671 |
+
"loss": 0.7885,
|
672 |
+
"step": 2430
|
673 |
+
},
|
674 |
+
{
|
675 |
+
"epoch": 0.38795142721968146,
|
676 |
+
"grad_norm": 0.6186659932136536,
|
677 |
+
"learning_rate": 9.254864736592311e-05,
|
678 |
+
"loss": 0.7619,
|
679 |
+
"step": 2460
|
680 |
+
},
|
681 |
+
{
|
682 |
+
"epoch": 0.39268254218577514,
|
683 |
+
"grad_norm": 0.6791619062423706,
|
684 |
+
"learning_rate": 9.245372567631704e-05,
|
685 |
+
"loss": 0.8084,
|
686 |
+
"step": 2490
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.39741365715186877,
|
690 |
+
"grad_norm": 0.6537867784500122,
|
691 |
+
"learning_rate": 9.235880398671097e-05,
|
692 |
+
"loss": 0.7641,
|
693 |
+
"step": 2520
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.40214477211796246,
|
697 |
+
"grad_norm": 0.6688680052757263,
|
698 |
+
"learning_rate": 9.22638822971049e-05,
|
699 |
+
"loss": 0.7634,
|
700 |
+
"step": 2550
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 0.40687588708405614,
|
704 |
+
"grad_norm": 0.6369423866271973,
|
705 |
+
"learning_rate": 9.216896060749882e-05,
|
706 |
+
"loss": 0.7407,
|
707 |
+
"step": 2580
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"epoch": 0.4100299637281186,
|
711 |
+
"eval_loss": 0.8817442059516907,
|
712 |
+
"eval_runtime": 3.7541,
|
713 |
+
"eval_samples_per_second": 26.904,
|
714 |
+
"eval_steps_per_second": 3.463,
|
715 |
+
"step": 2600
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 0.41160700205014983,
|
719 |
+
"grad_norm": 0.6841573119163513,
|
720 |
+
"learning_rate": 9.207403891789275e-05,
|
721 |
+
"loss": 0.7572,
|
722 |
+
"step": 2610
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.4163381170162435,
|
726 |
+
"grad_norm": 0.625957727432251,
|
727 |
+
"learning_rate": 9.197911722828667e-05,
|
728 |
+
"loss": 0.7493,
|
729 |
+
"step": 2640
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.42106923198233714,
|
733 |
+
"grad_norm": 0.7467941641807556,
|
734 |
+
"learning_rate": 9.18841955386806e-05,
|
735 |
+
"loss": 0.7468,
|
736 |
+
"step": 2670
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 0.42580034694843083,
|
740 |
+
"grad_norm": 0.6891815662384033,
|
741 |
+
"learning_rate": 9.178927384907452e-05,
|
742 |
+
"loss": 0.7698,
|
743 |
+
"step": 2700
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 0.4305314619145245,
|
747 |
+
"grad_norm": 0.6197889447212219,
|
748 |
+
"learning_rate": 9.169435215946845e-05,
|
749 |
+
"loss": 0.7588,
|
750 |
+
"step": 2730
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"epoch": 0.4352625768806182,
|
754 |
+
"grad_norm": 0.7140328884124756,
|
755 |
+
"learning_rate": 9.159943046986237e-05,
|
756 |
+
"loss": 0.7569,
|
757 |
+
"step": 2760
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 0.4399936918467119,
|
761 |
+
"grad_norm": 0.7718496322631836,
|
762 |
+
"learning_rate": 9.15045087802563e-05,
|
763 |
+
"loss": 0.7448,
|
764 |
+
"step": 2790
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.4415707301687431,
|
768 |
+
"eval_loss": 0.8855557441711426,
|
769 |
+
"eval_runtime": 3.7544,
|
770 |
+
"eval_samples_per_second": 26.902,
|
771 |
+
"eval_steps_per_second": 3.463,
|
772 |
+
"step": 2800
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.4447248068128056,
|
776 |
+
"grad_norm": 0.6447039246559143,
|
777 |
+
"learning_rate": 9.140958709065022e-05,
|
778 |
+
"loss": 0.7623,
|
779 |
+
"step": 2820
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.4494559217788992,
|
783 |
+
"grad_norm": 0.6694769859313965,
|
784 |
+
"learning_rate": 9.131466540104415e-05,
|
785 |
+
"loss": 0.7081,
|
786 |
+
"step": 2850
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.4541870367449929,
|
790 |
+
"grad_norm": 0.6863081455230713,
|
791 |
+
"learning_rate": 9.121974371143806e-05,
|
792 |
+
"loss": 0.7228,
|
793 |
+
"step": 2880
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.4589181517110866,
|
797 |
+
"grad_norm": 0.7198454737663269,
|
798 |
+
"learning_rate": 9.1124822021832e-05,
|
799 |
+
"loss": 0.7356,
|
800 |
+
"step": 2910
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.46364926667718026,
|
804 |
+
"grad_norm": 0.6542885303497314,
|
805 |
+
"learning_rate": 9.102990033222591e-05,
|
806 |
+
"loss": 0.7606,
|
807 |
+
"step": 2940
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.46838038164327395,
|
811 |
+
"grad_norm": 0.657539963722229,
|
812 |
+
"learning_rate": 9.093497864261984e-05,
|
813 |
+
"loss": 0.7255,
|
814 |
+
"step": 2970
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.47311149660936763,
|
818 |
+
"grad_norm": 0.819503664970398,
|
819 |
+
"learning_rate": 9.084005695301376e-05,
|
820 |
+
"loss": 0.7184,
|
821 |
+
"step": 3000
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.47311149660936763,
|
825 |
+
"eval_loss": 0.8140414357185364,
|
826 |
+
"eval_runtime": 3.7531,
|
827 |
+
"eval_samples_per_second": 26.911,
|
828 |
+
"eval_steps_per_second": 3.464,
|
829 |
+
"step": 3000
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.47784261157546126,
|
833 |
+
"grad_norm": 0.7199704647064209,
|
834 |
+
"learning_rate": 9.074513526340769e-05,
|
835 |
+
"loss": 0.7227,
|
836 |
+
"step": 3030
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.48257372654155495,
|
840 |
+
"grad_norm": 0.7655025720596313,
|
841 |
+
"learning_rate": 9.065021357380162e-05,
|
842 |
+
"loss": 0.7217,
|
843 |
+
"step": 3060
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.48730484150764863,
|
847 |
+
"grad_norm": 0.7312873601913452,
|
848 |
+
"learning_rate": 9.055845594051574e-05,
|
849 |
+
"loss": 0.7059,
|
850 |
+
"step": 3090
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.4920359564737423,
|
854 |
+
"grad_norm": 0.5961809158325195,
|
855 |
+
"learning_rate": 9.046353425090967e-05,
|
856 |
+
"loss": 0.7033,
|
857 |
+
"step": 3120
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.496767071439836,
|
861 |
+
"grad_norm": 0.6955564022064209,
|
862 |
+
"learning_rate": 9.03686125613036e-05,
|
863 |
+
"loss": 0.7289,
|
864 |
+
"step": 3150
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.5014981864059297,
|
868 |
+
"grad_norm": 0.6622660160064697,
|
869 |
+
"learning_rate": 9.027369087169752e-05,
|
870 |
+
"loss": 0.6935,
|
871 |
+
"step": 3180
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.5046522630499921,
|
875 |
+
"eval_loss": 0.7775673270225525,
|
876 |
+
"eval_runtime": 3.754,
|
877 |
+
"eval_samples_per_second": 26.904,
|
878 |
+
"eval_steps_per_second": 3.463,
|
879 |
+
"step": 3200
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.5062293013720234,
|
883 |
+
"grad_norm": 0.7262014746665955,
|
884 |
+
"learning_rate": 9.017876918209145e-05,
|
885 |
+
"loss": 0.6906,
|
886 |
+
"step": 3210
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"epoch": 0.5109604163381171,
|
890 |
+
"grad_norm": 0.7221697568893433,
|
891 |
+
"learning_rate": 9.008384749248537e-05,
|
892 |
+
"loss": 0.7079,
|
893 |
+
"step": 3240
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.5156915313042106,
|
897 |
+
"grad_norm": 0.7115603089332581,
|
898 |
+
"learning_rate": 8.99889258028793e-05,
|
899 |
+
"loss": 0.7191,
|
900 |
+
"step": 3270
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.5204226462703043,
|
904 |
+
"grad_norm": 0.7292232513427734,
|
905 |
+
"learning_rate": 8.989400411327322e-05,
|
906 |
+
"loss": 0.6702,
|
907 |
+
"step": 3300
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 0.525153761236398,
|
911 |
+
"grad_norm": 0.741580605506897,
|
912 |
+
"learning_rate": 8.979908242366715e-05,
|
913 |
+
"loss": 0.6762,
|
914 |
+
"step": 3330
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.5298848762024917,
|
918 |
+
"grad_norm": 0.7870708107948303,
|
919 |
+
"learning_rate": 8.970416073406108e-05,
|
920 |
+
"loss": 0.6838,
|
921 |
+
"step": 3360
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 0.5346159911685854,
|
925 |
+
"grad_norm": 0.71812903881073,
|
926 |
+
"learning_rate": 8.9609239044455e-05,
|
927 |
+
"loss": 0.7174,
|
928 |
+
"step": 3390
|
929 |
+
},
|
930 |
+
{
|
931 |
+
"epoch": 0.5361930294906166,
|
932 |
+
"eval_loss": 0.7375061511993408,
|
933 |
+
"eval_runtime": 3.7548,
|
934 |
+
"eval_samples_per_second": 26.899,
|
935 |
+
"eval_steps_per_second": 3.462,
|
936 |
+
"step": 3400
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 0.5393471061346791,
|
940 |
+
"grad_norm": 0.7266995906829834,
|
941 |
+
"learning_rate": 8.951431735484893e-05,
|
942 |
+
"loss": 0.6763,
|
943 |
+
"step": 3420
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 0.5440782211007728,
|
947 |
+
"grad_norm": 0.7786857485771179,
|
948 |
+
"learning_rate": 8.941939566524284e-05,
|
949 |
+
"loss": 0.7149,
|
950 |
+
"step": 3450
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.5488093360668664,
|
954 |
+
"grad_norm": 0.7807109355926514,
|
955 |
+
"learning_rate": 8.932447397563677e-05,
|
956 |
+
"loss": 0.6534,
|
957 |
+
"step": 3480
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 0.5535404510329601,
|
961 |
+
"grad_norm": 0.6960239410400391,
|
962 |
+
"learning_rate": 8.922955228603069e-05,
|
963 |
+
"loss": 0.7313,
|
964 |
+
"step": 3510
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 0.5582715659990538,
|
968 |
+
"grad_norm": 0.586615264415741,
|
969 |
+
"learning_rate": 8.913463059642462e-05,
|
970 |
+
"loss": 0.6579,
|
971 |
+
"step": 3540
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 0.5630026809651475,
|
975 |
+
"grad_norm": 0.9740248918533325,
|
976 |
+
"learning_rate": 8.903970890681854e-05,
|
977 |
+
"loss": 0.7013,
|
978 |
+
"step": 3570
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 0.5677337959312412,
|
982 |
+
"grad_norm": 0.6628558039665222,
|
983 |
+
"learning_rate": 8.894478721721247e-05,
|
984 |
+
"loss": 0.6546,
|
985 |
+
"step": 3600
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 0.5677337959312412,
|
989 |
+
"eval_loss": 0.7031014561653137,
|
990 |
+
"eval_runtime": 3.7542,
|
991 |
+
"eval_samples_per_second": 26.903,
|
992 |
+
"eval_steps_per_second": 3.463,
|
993 |
+
"step": 3600
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 0.5724649108973348,
|
997 |
+
"grad_norm": 0.6030669808387756,
|
998 |
+
"learning_rate": 8.884986552760639e-05,
|
999 |
+
"loss": 0.7146,
|
1000 |
+
"step": 3630
|
1001 |
+
},
|
1002 |
+
{
|
1003 |
+
"epoch": 0.5771960258634284,
|
1004 |
+
"grad_norm": 0.6010313034057617,
|
1005 |
+
"learning_rate": 8.875494383800032e-05,
|
1006 |
+
"loss": 0.6816,
|
1007 |
+
"step": 3660
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"epoch": 0.5819271408295221,
|
1011 |
+
"grad_norm": 0.6319311857223511,
|
1012 |
+
"learning_rate": 8.866002214839425e-05,
|
1013 |
+
"loss": 0.6642,
|
1014 |
+
"step": 3690
|
1015 |
+
},
|
1016 |
+
{
|
1017 |
+
"epoch": 0.5866582557956158,
|
1018 |
+
"grad_norm": 0.6059941053390503,
|
1019 |
+
"learning_rate": 8.856510045878817e-05,
|
1020 |
+
"loss": 0.6998,
|
1021 |
+
"step": 3720
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 0.5913893707617095,
|
1025 |
+
"grad_norm": 0.5976997017860413,
|
1026 |
+
"learning_rate": 8.84701787691821e-05,
|
1027 |
+
"loss": 0.6694,
|
1028 |
+
"step": 3750
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 0.5961204857278032,
|
1032 |
+
"grad_norm": 0.6985177993774414,
|
1033 |
+
"learning_rate": 8.837525707957602e-05,
|
1034 |
+
"loss": 0.6402,
|
1035 |
+
"step": 3780
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.5992745623718656,
|
1039 |
+
"eval_loss": 0.6977850198745728,
|
1040 |
+
"eval_runtime": 3.7545,
|
1041 |
+
"eval_samples_per_second": 26.901,
|
1042 |
+
"eval_steps_per_second": 3.462,
|
1043 |
+
"step": 3800
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"epoch": 0.6008516006938969,
|
1047 |
+
"grad_norm": 0.7076742053031921,
|
1048 |
+
"learning_rate": 8.828033538996995e-05,
|
1049 |
+
"loss": 0.6749,
|
1050 |
+
"step": 3810
|
1051 |
+
},
|
1052 |
+
{
|
1053 |
+
"epoch": 0.6055827156599906,
|
1054 |
+
"grad_norm": 0.9254401326179504,
|
1055 |
+
"learning_rate": 8.818541370036387e-05,
|
1056 |
+
"loss": 0.6481,
|
1057 |
+
"step": 3840
|
1058 |
+
},
|
1059 |
+
{
|
1060 |
+
"epoch": 0.6103138306260842,
|
1061 |
+
"grad_norm": 0.7403334379196167,
|
1062 |
+
"learning_rate": 8.80904920107578e-05,
|
1063 |
+
"loss": 0.6704,
|
1064 |
+
"step": 3870
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.6150449455921779,
|
1068 |
+
"grad_norm": 0.6302973628044128,
|
1069 |
+
"learning_rate": 8.799557032115171e-05,
|
1070 |
+
"loss": 0.6717,
|
1071 |
+
"step": 3900
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.6197760605582716,
|
1075 |
+
"grad_norm": 0.7587308287620544,
|
1076 |
+
"learning_rate": 8.790064863154565e-05,
|
1077 |
+
"loss": 0.6526,
|
1078 |
+
"step": 3930
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"epoch": 0.6245071755243652,
|
1082 |
+
"grad_norm": 0.768151581287384,
|
1083 |
+
"learning_rate": 8.780572694193956e-05,
|
1084 |
+
"loss": 0.6614,
|
1085 |
+
"step": 3960
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 0.6292382904904589,
|
1089 |
+
"grad_norm": 0.662624716758728,
|
1090 |
+
"learning_rate": 8.77108052523335e-05,
|
1091 |
+
"loss": 0.6471,
|
1092 |
+
"step": 3990
|
1093 |
+
},
|
1094 |
+
{
|
1095 |
+
"epoch": 0.6308153288124901,
|
1096 |
+
"eval_loss": 0.6685364246368408,
|
1097 |
+
"eval_runtime": 3.7533,
|
1098 |
+
"eval_samples_per_second": 26.909,
|
1099 |
+
"eval_steps_per_second": 3.464,
|
1100 |
+
"step": 4000
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.6339694054565526,
|
1104 |
+
"grad_norm": 0.614434540271759,
|
1105 |
+
"learning_rate": 8.761588356272743e-05,
|
1106 |
+
"loss": 0.6305,
|
1107 |
+
"step": 4020
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.6387005204226462,
|
1111 |
+
"grad_norm": 0.7292618751525879,
|
1112 |
+
"learning_rate": 8.752096187312134e-05,
|
1113 |
+
"loss": 0.632,
|
1114 |
+
"step": 4050
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 0.6434316353887399,
|
1118 |
+
"grad_norm": 0.5890663862228394,
|
1119 |
+
"learning_rate": 8.742604018351527e-05,
|
1120 |
+
"loss": 0.6594,
|
1121 |
+
"step": 4080
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 0.6481627503548336,
|
1125 |
+
"grad_norm": 0.6511669158935547,
|
1126 |
+
"learning_rate": 8.733111849390919e-05,
|
1127 |
+
"loss": 0.6417,
|
1128 |
+
"step": 4110
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"epoch": 0.6528938653209273,
|
1132 |
+
"grad_norm": 0.6794877648353577,
|
1133 |
+
"learning_rate": 8.723619680430312e-05,
|
1134 |
+
"loss": 0.6472,
|
1135 |
+
"step": 4140
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"epoch": 0.657624980287021,
|
1139 |
+
"grad_norm": 0.5826547145843506,
|
1140 |
+
"learning_rate": 8.714127511469704e-05,
|
1141 |
+
"loss": 0.6255,
|
1142 |
+
"step": 4170
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.6623560952531147,
|
1146 |
+
"grad_norm": 0.8411812782287598,
|
1147 |
+
"learning_rate": 8.704635342509097e-05,
|
1148 |
+
"loss": 0.6368,
|
1149 |
+
"step": 4200
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.6623560952531147,
|
1153 |
+
"eval_loss": 0.6538847088813782,
|
1154 |
+
"eval_runtime": 3.7543,
|
1155 |
+
"eval_samples_per_second": 26.903,
|
1156 |
+
"eval_steps_per_second": 3.463,
|
1157 |
+
"step": 4200
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.6670872102192084,
|
1161 |
+
"grad_norm": 0.5682166218757629,
|
1162 |
+
"learning_rate": 8.69514317354849e-05,
|
1163 |
+
"loss": 0.6269,
|
1164 |
+
"step": 4230
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.671818325185302,
|
1168 |
+
"grad_norm": 0.6340855360031128,
|
1169 |
+
"learning_rate": 8.685651004587882e-05,
|
1170 |
+
"loss": 0.6423,
|
1171 |
+
"step": 4260
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.6765494401513957,
|
1175 |
+
"grad_norm": 0.6693681478500366,
|
1176 |
+
"learning_rate": 8.676158835627275e-05,
|
1177 |
+
"loss": 0.6471,
|
1178 |
+
"step": 4290
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.6812805551174893,
|
1182 |
+
"grad_norm": 0.6101056337356567,
|
1183 |
+
"learning_rate": 8.666666666666667e-05,
|
1184 |
+
"loss": 0.6168,
|
1185 |
+
"step": 4320
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.686011670083583,
|
1189 |
+
"grad_norm": 0.6096228361129761,
|
1190 |
+
"learning_rate": 8.65717449770606e-05,
|
1191 |
+
"loss": 0.6494,
|
1192 |
+
"step": 4350
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.6907427850496767,
|
1196 |
+
"grad_norm": 0.6632306575775146,
|
1197 |
+
"learning_rate": 8.647682328745452e-05,
|
1198 |
+
"loss": 0.664,
|
1199 |
+
"step": 4380
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.6938968616937392,
|
1203 |
+
"eval_loss": 0.6377571225166321,
|
1204 |
+
"eval_runtime": 3.756,
|
1205 |
+
"eval_samples_per_second": 26.89,
|
1206 |
+
"eval_steps_per_second": 3.461,
|
1207 |
+
"step": 4400
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.6954739000157704,
|
1211 |
+
"grad_norm": 0.6547721028327942,
|
1212 |
+
"learning_rate": 8.638190159784845e-05,
|
1213 |
+
"loss": 0.6091,
|
1214 |
+
"step": 4410
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.700205014981864,
|
1218 |
+
"grad_norm": 0.6063847541809082,
|
1219 |
+
"learning_rate": 8.628697990824237e-05,
|
1220 |
+
"loss": 0.6055,
|
1221 |
+
"step": 4440
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.7049361299479577,
|
1225 |
+
"grad_norm": 0.6687933802604675,
|
1226 |
+
"learning_rate": 8.61920582186363e-05,
|
1227 |
+
"loss": 0.601,
|
1228 |
+
"step": 4470
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.7096672449140514,
|
1232 |
+
"grad_norm": 0.701770007610321,
|
1233 |
+
"learning_rate": 8.609713652903021e-05,
|
1234 |
+
"loss": 0.6064,
|
1235 |
+
"step": 4500
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.7143983598801451,
|
1239 |
+
"grad_norm": 0.6652805209159851,
|
1240 |
+
"learning_rate": 8.600221483942414e-05,
|
1241 |
+
"loss": 0.653,
|
1242 |
+
"step": 4530
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.7191294748462388,
|
1246 |
+
"grad_norm": 0.6469018459320068,
|
1247 |
+
"learning_rate": 8.590729314981806e-05,
|
1248 |
+
"loss": 0.6019,
|
1249 |
+
"step": 4560
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.7238605898123325,
|
1253 |
+
"grad_norm": 0.6343564391136169,
|
1254 |
+
"learning_rate": 8.5812371460212e-05,
|
1255 |
+
"loss": 0.6083,
|
1256 |
+
"step": 4590
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.7254376281343636,
|
1260 |
+
"eval_loss": 0.6411118507385254,
|
1261 |
+
"eval_runtime": 3.754,
|
1262 |
+
"eval_samples_per_second": 26.905,
|
1263 |
+
"eval_steps_per_second": 3.463,
|
1264 |
+
"step": 4600
|
1265 |
+
},
|
1266 |
+
{
|
1267 |
+
"epoch": 0.7285917047784262,
|
1268 |
+
"grad_norm": 0.5817134976387024,
|
1269 |
+
"learning_rate": 8.571744977060592e-05,
|
1270 |
+
"loss": 0.602,
|
1271 |
+
"step": 4620
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"epoch": 0.7333228197445197,
|
1275 |
+
"grad_norm": 0.5552039742469788,
|
1276 |
+
"learning_rate": 8.562252808099984e-05,
|
1277 |
+
"loss": 0.6223,
|
1278 |
+
"step": 4650
|
1279 |
+
},
|
1280 |
+
{
|
1281 |
+
"epoch": 0.7380539347106134,
|
1282 |
+
"grad_norm": 0.6455065011978149,
|
1283 |
+
"learning_rate": 8.552760639139377e-05,
|
1284 |
+
"loss": 0.5865,
|
1285 |
+
"step": 4680
|
1286 |
+
},
|
1287 |
+
{
|
1288 |
+
"epoch": 0.7427850496767071,
|
1289 |
+
"grad_norm": 0.6448588371276855,
|
1290 |
+
"learning_rate": 8.543268470178769e-05,
|
1291 |
+
"loss": 0.6126,
|
1292 |
+
"step": 4710
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 0.7475161646428008,
|
1296 |
+
"grad_norm": 0.6447100639343262,
|
1297 |
+
"learning_rate": 8.533776301218162e-05,
|
1298 |
+
"loss": 0.6167,
|
1299 |
+
"step": 4740
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 0.7522472796088945,
|
1303 |
+
"grad_norm": 0.6894412636756897,
|
1304 |
+
"learning_rate": 8.524284132257555e-05,
|
1305 |
+
"loss": 0.5851,
|
1306 |
+
"step": 4770
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 0.7569783945749882,
|
1310 |
+
"grad_norm": 0.6036236882209778,
|
1311 |
+
"learning_rate": 8.514791963296947e-05,
|
1312 |
+
"loss": 0.6025,
|
1313 |
+
"step": 4800
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 0.7569783945749882,
|
1317 |
+
"eval_loss": 0.6117845177650452,
|
1318 |
+
"eval_runtime": 3.7554,
|
1319 |
+
"eval_samples_per_second": 26.894,
|
1320 |
+
"eval_steps_per_second": 3.462,
|
1321 |
+
"step": 4800
|
1322 |
+
},
|
1323 |
+
{
|
1324 |
+
"epoch": 0.7617095095410819,
|
1325 |
+
"grad_norm": 0.6214340925216675,
|
1326 |
+
"learning_rate": 8.50529979433634e-05,
|
1327 |
+
"loss": 0.6145,
|
1328 |
+
"step": 4830
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.7664406245071755,
|
1332 |
+
"grad_norm": 0.6933445334434509,
|
1333 |
+
"learning_rate": 8.495807625375732e-05,
|
1334 |
+
"loss": 0.6184,
|
1335 |
+
"step": 4860
|
1336 |
+
},
|
1337 |
+
{
|
1338 |
+
"epoch": 0.7711717394732692,
|
1339 |
+
"grad_norm": 0.5649739503860474,
|
1340 |
+
"learning_rate": 8.486315456415125e-05,
|
1341 |
+
"loss": 0.5996,
|
1342 |
+
"step": 4890
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 0.7759028544393629,
|
1346 |
+
"grad_norm": 0.6250168085098267,
|
1347 |
+
"learning_rate": 8.476823287454517e-05,
|
1348 |
+
"loss": 0.5762,
|
1349 |
+
"step": 4920
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 0.7806339694054566,
|
1353 |
+
"grad_norm": 1.7125053405761719,
|
1354 |
+
"learning_rate": 8.46733111849391e-05,
|
1355 |
+
"loss": 0.5716,
|
1356 |
+
"step": 4950
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 0.7853650843715503,
|
1360 |
+
"grad_norm": 0.5721966028213501,
|
1361 |
+
"learning_rate": 8.457838949533302e-05,
|
1362 |
+
"loss": 0.5612,
|
1363 |
+
"step": 4980
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 0.7885191610156127,
|
1367 |
+
"eval_loss": 0.5980841517448425,
|
1368 |
+
"eval_runtime": 3.7547,
|
1369 |
+
"eval_samples_per_second": 26.9,
|
1370 |
+
"eval_steps_per_second": 3.462,
|
1371 |
+
"step": 5000
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 0.7900961993376439,
|
1375 |
+
"grad_norm": 0.6716078519821167,
|
1376 |
+
"learning_rate": 8.448346780572695e-05,
|
1377 |
+
"loss": 0.5765,
|
1378 |
+
"step": 5010
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 0.7948273143037375,
|
1382 |
+
"grad_norm": 0.6005885601043701,
|
1383 |
+
"learning_rate": 8.438854611612086e-05,
|
1384 |
+
"loss": 0.5941,
|
1385 |
+
"step": 5040
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 0.7995584292698312,
|
1389 |
+
"grad_norm": 0.6507188081741333,
|
1390 |
+
"learning_rate": 8.42936244265148e-05,
|
1391 |
+
"loss": 0.5827,
|
1392 |
+
"step": 5070
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"epoch": 0.8042895442359249,
|
1396 |
+
"grad_norm": 0.7276827096939087,
|
1397 |
+
"learning_rate": 8.419870273690871e-05,
|
1398 |
+
"loss": 0.5555,
|
1399 |
+
"step": 5100
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"epoch": 0.8090206592020186,
|
1403 |
+
"grad_norm": 0.6792399287223816,
|
1404 |
+
"learning_rate": 8.410378104730264e-05,
|
1405 |
+
"loss": 0.5724,
|
1406 |
+
"step": 5130
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 0.8137517741681123,
|
1410 |
+
"grad_norm": 0.7074045538902283,
|
1411 |
+
"learning_rate": 8.400885935769656e-05,
|
1412 |
+
"loss": 0.5724,
|
1413 |
+
"step": 5160
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.818482889134206,
|
1417 |
+
"grad_norm": 0.6056311130523682,
|
1418 |
+
"learning_rate": 8.391393766809049e-05,
|
1419 |
+
"loss": 0.5546,
|
1420 |
+
"step": 5190
|
1421 |
+
},
|
1422 |
+
{
|
1423 |
+
"epoch": 0.8200599274562372,
|
1424 |
+
"eval_loss": 0.5805890560150146,
|
1425 |
+
"eval_runtime": 3.7561,
|
1426 |
+
"eval_samples_per_second": 26.889,
|
1427 |
+
"eval_steps_per_second": 3.461,
|
1428 |
+
"step": 5200
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 0.8232140041002997,
|
1432 |
+
"grad_norm": 0.6667674779891968,
|
1433 |
+
"learning_rate": 8.381901597848441e-05,
|
1434 |
+
"loss": 0.6173,
|
1435 |
+
"step": 5220
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 0.8279451190663933,
|
1439 |
+
"grad_norm": 0.607284426689148,
|
1440 |
+
"learning_rate": 8.372409428887834e-05,
|
1441 |
+
"loss": 0.5781,
|
1442 |
+
"step": 5250
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.832676234032487,
|
1446 |
+
"grad_norm": 0.6476745009422302,
|
1447 |
+
"learning_rate": 8.362917259927227e-05,
|
1448 |
+
"loss": 0.5667,
|
1449 |
+
"step": 5280
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.8374073489985807,
|
1453 |
+
"grad_norm": 0.6668260097503662,
|
1454 |
+
"learning_rate": 8.35342509096662e-05,
|
1455 |
+
"loss": 0.5456,
|
1456 |
+
"step": 5310
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 0.8421384639646743,
|
1460 |
+
"grad_norm": 0.585110068321228,
|
1461 |
+
"learning_rate": 8.343932922006012e-05,
|
1462 |
+
"loss": 0.5648,
|
1463 |
+
"step": 5340
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 0.846869578930768,
|
1467 |
+
"grad_norm": 0.6268571019172668,
|
1468 |
+
"learning_rate": 8.334757158677425e-05,
|
1469 |
+
"loss": 0.555,
|
1470 |
+
"step": 5370
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 0.8516006938968617,
|
1474 |
+
"grad_norm": 0.6197232604026794,
|
1475 |
+
"learning_rate": 8.325264989716818e-05,
|
1476 |
+
"loss": 0.5333,
|
1477 |
+
"step": 5400
|
1478 |
+
},
|
1479 |
+
{
|
1480 |
+
"epoch": 0.8516006938968617,
|
1481 |
+
"eval_loss": 0.5601951479911804,
|
1482 |
+
"eval_runtime": 3.7534,
|
1483 |
+
"eval_samples_per_second": 26.909,
|
1484 |
+
"eval_steps_per_second": 3.464,
|
1485 |
+
"step": 5400
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.8563318088629553,
|
1489 |
+
"grad_norm": 0.63880455493927,
|
1490 |
+
"learning_rate": 8.31577282075621e-05,
|
1491 |
+
"loss": 0.5602,
|
1492 |
+
"step": 5430
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"epoch": 0.861062923829049,
|
1496 |
+
"grad_norm": 0.6235695481300354,
|
1497 |
+
"learning_rate": 8.306280651795603e-05,
|
1498 |
+
"loss": 0.5604,
|
1499 |
+
"step": 5460
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 0.8657940387951427,
|
1503 |
+
"grad_norm": 0.9000911712646484,
|
1504 |
+
"learning_rate": 8.296788482834995e-05,
|
1505 |
+
"loss": 0.5654,
|
1506 |
+
"step": 5490
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 0.8705251537612364,
|
1510 |
+
"grad_norm": 0.6557802557945251,
|
1511 |
+
"learning_rate": 8.287612719506408e-05,
|
1512 |
+
"loss": 0.5962,
|
1513 |
+
"step": 5520
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"epoch": 0.8752562687273301,
|
1517 |
+
"grad_norm": 0.6231096982955933,
|
1518 |
+
"learning_rate": 8.278120550545801e-05,
|
1519 |
+
"loss": 0.5636,
|
1520 |
+
"step": 5550
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 0.8799873836934238,
|
1524 |
+
"grad_norm": 0.5984258651733398,
|
1525 |
+
"learning_rate": 8.268628381585192e-05,
|
1526 |
+
"loss": 0.5616,
|
1527 |
+
"step": 5580
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"epoch": 0.8831414603374862,
|
1531 |
+
"eval_loss": 0.5611711740493774,
|
1532 |
+
"eval_runtime": 3.7542,
|
1533 |
+
"eval_samples_per_second": 26.903,
|
1534 |
+
"eval_steps_per_second": 3.463,
|
1535 |
+
"step": 5600
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.8847184986595175,
|
1539 |
+
"grad_norm": 0.5818042159080505,
|
1540 |
+
"learning_rate": 8.259452618256605e-05,
|
1541 |
+
"loss": 0.5316,
|
1542 |
+
"step": 5610
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.8894496136256111,
|
1546 |
+
"grad_norm": 0.7120912671089172,
|
1547 |
+
"learning_rate": 8.249960449295998e-05,
|
1548 |
+
"loss": 0.5556,
|
1549 |
+
"step": 5640
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.8941807285917048,
|
1553 |
+
"grad_norm": 0.6223446130752563,
|
1554 |
+
"learning_rate": 8.24046828033539e-05,
|
1555 |
+
"loss": 0.5452,
|
1556 |
+
"step": 5670
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.8989118435577984,
|
1560 |
+
"grad_norm": 0.6196858286857605,
|
1561 |
+
"learning_rate": 8.230976111374783e-05,
|
1562 |
+
"loss": 0.5601,
|
1563 |
+
"step": 5700
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.9036429585238921,
|
1567 |
+
"grad_norm": 0.6353973150253296,
|
1568 |
+
"learning_rate": 8.221483942414175e-05,
|
1569 |
+
"loss": 0.5402,
|
1570 |
+
"step": 5730
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.9083740734899858,
|
1574 |
+
"grad_norm": 0.6631510257720947,
|
1575 |
+
"learning_rate": 8.211991773453568e-05,
|
1576 |
+
"loss": 0.5382,
|
1577 |
+
"step": 5760
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.9131051884560795,
|
1581 |
+
"grad_norm": 0.6404465436935425,
|
1582 |
+
"learning_rate": 8.20249960449296e-05,
|
1583 |
+
"loss": 0.5298,
|
1584 |
+
"step": 5790
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.9146822267781107,
|
1588 |
+
"eval_loss": 0.560188353061676,
|
1589 |
+
"eval_runtime": 3.7541,
|
1590 |
+
"eval_samples_per_second": 26.904,
|
1591 |
+
"eval_steps_per_second": 3.463,
|
1592 |
+
"step": 5800
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.9178363034221731,
|
1596 |
+
"grad_norm": 0.6810153126716614,
|
1597 |
+
"learning_rate": 8.193007435532353e-05,
|
1598 |
+
"loss": 0.5159,
|
1599 |
+
"step": 5820
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.9225674183882668,
|
1603 |
+
"grad_norm": 0.5828801989555359,
|
1604 |
+
"learning_rate": 8.183515266571745e-05,
|
1605 |
+
"loss": 0.5155,
|
1606 |
+
"step": 5850
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 0.9272985333543605,
|
1610 |
+
"grad_norm": 0.538987934589386,
|
1611 |
+
"learning_rate": 8.174023097611138e-05,
|
1612 |
+
"loss": 0.5273,
|
1613 |
+
"step": 5880
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 0.9320296483204542,
|
1617 |
+
"grad_norm": 0.6222363114356995,
|
1618 |
+
"learning_rate": 8.16453092865053e-05,
|
1619 |
+
"loss": 0.526,
|
1620 |
+
"step": 5910
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 0.9367607632865479,
|
1624 |
+
"grad_norm": 0.542966902256012,
|
1625 |
+
"learning_rate": 8.155038759689923e-05,
|
1626 |
+
"loss": 0.5653,
|
1627 |
+
"step": 5940
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 0.9414918782526416,
|
1631 |
+
"grad_norm": 0.7064533829689026,
|
1632 |
+
"learning_rate": 8.145546590729315e-05,
|
1633 |
+
"loss": 0.5207,
|
1634 |
+
"step": 5970
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.9462229932187353,
|
1638 |
+
"grad_norm": 0.6652514934539795,
|
1639 |
+
"learning_rate": 8.136054421768708e-05,
|
1640 |
+
"loss": 0.5342,
|
1641 |
+
"step": 6000
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.9462229932187353,
|
1645 |
+
"eval_loss": 0.5476773977279663,
|
1646 |
+
"eval_runtime": 3.7543,
|
1647 |
+
"eval_samples_per_second": 26.902,
|
1648 |
+
"eval_steps_per_second": 3.463,
|
1649 |
+
"step": 6000
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"epoch": 0.9509541081848288,
|
1653 |
+
"grad_norm": 0.6436010003089905,
|
1654 |
+
"learning_rate": 8.126562252808101e-05,
|
1655 |
+
"loss": 0.536,
|
1656 |
+
"step": 6030
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"epoch": 0.9556852231509225,
|
1660 |
+
"grad_norm": 0.5532657504081726,
|
1661 |
+
"learning_rate": 8.117070083847494e-05,
|
1662 |
+
"loss": 0.5261,
|
1663 |
+
"step": 6060
|
1664 |
+
},
|
1665 |
+
{
|
1666 |
+
"epoch": 0.9604163381170162,
|
1667 |
+
"grad_norm": 0.6539950370788574,
|
1668 |
+
"learning_rate": 8.107577914886886e-05,
|
1669 |
+
"loss": 0.5226,
|
1670 |
+
"step": 6090
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 0.9651474530831099,
|
1674 |
+
"grad_norm": 0.5767289996147156,
|
1675 |
+
"learning_rate": 8.098085745926279e-05,
|
1676 |
+
"loss": 0.534,
|
1677 |
+
"step": 6120
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 0.9698785680492036,
|
1681 |
+
"grad_norm": 0.6355389356613159,
|
1682 |
+
"learning_rate": 8.08859357696567e-05,
|
1683 |
+
"loss": 0.5282,
|
1684 |
+
"step": 6150
|
1685 |
+
},
|
1686 |
+
{
|
1687 |
+
"epoch": 0.9746096830152973,
|
1688 |
+
"grad_norm": 0.6711322665214539,
|
1689 |
+
"learning_rate": 8.079101408005064e-05,
|
1690 |
+
"loss": 0.5384,
|
1691 |
+
"step": 6180
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"epoch": 0.9777637596593597,
|
1695 |
+
"eval_loss": 0.5372142195701599,
|
1696 |
+
"eval_runtime": 3.7547,
|
1697 |
+
"eval_samples_per_second": 26.899,
|
1698 |
+
"eval_steps_per_second": 3.462,
|
1699 |
+
"step": 6200
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"epoch": 0.979340797981391,
|
1703 |
+
"grad_norm": 0.5990795493125916,
|
1704 |
+
"learning_rate": 8.069609239044455e-05,
|
1705 |
+
"loss": 0.4624,
|
1706 |
+
"step": 6210
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.9840719129474846,
|
1710 |
+
"grad_norm": 0.6971167325973511,
|
1711 |
+
"learning_rate": 8.060117070083848e-05,
|
1712 |
+
"loss": 0.5015,
|
1713 |
+
"step": 6240
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 0.9888030279135783,
|
1717 |
+
"grad_norm": 0.6699081659317017,
|
1718 |
+
"learning_rate": 8.05062490112324e-05,
|
1719 |
+
"loss": 0.5325,
|
1720 |
+
"step": 6270
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"epoch": 0.993534142879672,
|
1724 |
+
"grad_norm": 0.6347541213035583,
|
1725 |
+
"learning_rate": 8.041132732162633e-05,
|
1726 |
+
"loss": 0.5255,
|
1727 |
+
"step": 6300
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 0.9982652578457657,
|
1731 |
+
"grad_norm": 0.7587487101554871,
|
1732 |
+
"learning_rate": 8.031640563202025e-05,
|
1733 |
+
"loss": 0.5154,
|
1734 |
+
"step": 6330
|
1735 |
+
}
|
1736 |
+
],
|
1737 |
+
"logging_steps": 30,
|
1738 |
+
"max_steps": 31705,
|
1739 |
+
"num_input_tokens_seen": 0,
|
1740 |
+
"num_train_epochs": 5,
|
1741 |
+
"save_steps": 500,
|
1742 |
+
"stateful_callbacks": {
|
1743 |
+
"TrainerControl": {
|
1744 |
+
"args": {
|
1745 |
+
"should_epoch_stop": false,
|
1746 |
+
"should_evaluate": false,
|
1747 |
+
"should_log": false,
|
1748 |
+
"should_save": true,
|
1749 |
+
"should_training_stop": false
|
1750 |
+
},
|
1751 |
+
"attributes": {}
|
1752 |
+
}
|
1753 |
+
},
|
1754 |
+
"total_flos": 2.9843838888449147e+18,
|
1755 |
+
"train_batch_size": 2,
|
1756 |
+
"trial_name": null,
|
1757 |
+
"trial_params": null
|
1758 |
+
}
|
checkpoint-6341/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a54e267381bb5495a94c0e010aacd60a26fbc7a49b6188c7488c38be0ea28c37
|
3 |
+
size 6267
|
checkpoint-6341/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|