|
--- |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: meta-llama/Llama-2-7b-hf |
|
model-index: |
|
- name: models/run2 |
|
results: [] |
|
--- |
|
|
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
# This file is used by the training script in train.ipynb. You can read more about |
|
# the format and see more examples at https://github.com/OpenAccess-AI-Collective/axolotl. |
|
# One of the parameters you might want to play around with is `num_epochs`: if you have a |
|
# smaller dataset size, making that large can have good results. |
|
|
|
base_model: meta-llama/Llama-2-7b-hf |
|
base_model_config: meta-llama/Llama-2-7b-hf |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: LlamaTokenizer |
|
is_llama_derived_model: true |
|
|
|
load_in_8bit: true |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: ./resources/train.jsonl |
|
type: alpaca |
|
dataset_prepared_path: ./resources/last_run_prepared |
|
val_set_size: 0.05 |
|
output_dir: ./models/run2 |
|
|
|
sequence_len: 4096 |
|
sample_packing: true |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
# This will report stats from your training run to https://wandb.ai/. If you don't want to create a wandb account you can comment this section out. |
|
wandb_project: google-boolq |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_run_id: run2 |
|
wandb_log_model: |
|
|
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 5 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: false |
|
|
|
warmup_steps: 10 |
|
eval_steps: 20 |
|
save_steps: 60 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
``` |
|
|
|
</details><br> |
|
|
|
# models/run2 |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the google/boolq dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3248 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 8.1402 | 0.02 | 1 | 8.4654 | |
|
| 0.3619 | 0.3 | 20 | 0.3422 | |
|
| 0.3432 | 0.6 | 40 | 0.3379 | |
|
| 0.3227 | 0.9 | 60 | 0.3375 | |
|
| 0.3315 | 1.18 | 80 | 0.3373 | |
|
| 0.3204 | 1.48 | 100 | 0.3315 | |
|
| 0.3291 | 1.79 | 120 | 0.3300 | |
|
| 0.319 | 2.07 | 140 | 0.3277 | |
|
| 0.3165 | 2.37 | 160 | 0.3280 | |
|
| 0.3133 | 2.67 | 180 | 0.3388 | |
|
| 0.3088 | 2.97 | 200 | 0.3263 | |
|
| 0.3448 | 3.25 | 220 | 0.3252 | |
|
| 0.3264 | 3.55 | 240 | 0.3273 | |
|
| 0.2946 | 3.85 | 260 | 0.3310 | |
|
| 0.3212 | 4.13 | 280 | 0.3244 | |
|
| 0.3118 | 4.43 | 300 | 0.3245 | |
|
| 0.3377 | 4.73 | 320 | 0.3248 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.9.0 |
|
- Transformers 4.40.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.0 |
|
|
|
## Evaluation results |
|
|
|
| Model | Accuracy | Avg Time | Avg Cost | |
|
|-------------------------|----------|----------|---------------------| |
|
| gpt-4 | 0.874 | 0.624 | 0.00552 | |
|
| gpt-3.5-turbo | 0.824 | 0.530 | 0.0000916 | |
|
| llama2-7b-ft-boolq-run2 | 0.856 | 0.0432 | 0.0000155 | |
|
|
|
### ft vs gpt4 |
|
|
|
- Cost Improvement: 357x |
|
- Latency Improvement: 12x |
|
|
|
### ft vs gpt3.5-turbo |
|
|
|
- Cost Improvement: 6x |
|
- Latency Improvement: 14x |
|
|