Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,119 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model: None
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: checkpoints-mistral-0.3b
|
7 |
+
results: []
|
8 |
license: apache-2.0
|
9 |
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# checkpoints-mistral-300M
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [None](https://huggingface.co/None) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.4867
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0003
|
38 |
+
- train_batch_size: 6
|
39 |
+
- eval_batch_size: 6
|
40 |
+
- seed: 42
|
41 |
+
- distributed_type: multi-GPU
|
42 |
+
- num_devices: 2
|
43 |
+
- gradient_accumulation_steps: 16
|
44 |
+
- total_train_batch_size: 192
|
45 |
+
- total_eval_batch_size: 12
|
46 |
+
- optimizer: Adam with betas=(0.9,0.95) and epsilon=0.0001
|
47 |
+
- lr_scheduler_type: cosine
|
48 |
+
- lr_scheduler_warmup_steps: 4
|
49 |
+
- num_epochs: 6
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
56 |
+
| 4.5141 | 0.09 | 1000 | 4.5160 |
|
57 |
+
| 3.7879 | 0.18 | 2000 | 3.8531 |
|
58 |
+
| 3.5484 | 0.27 | 3000 | 3.5881 |
|
59 |
+
| 3.3734 | 0.36 | 4000 | 3.4287 |
|
60 |
+
| 3.2722 | 0.45 | 5000 | 3.3144 |
|
61 |
+
| 3.2276 | 0.54 | 6000 | 3.2299 |
|
62 |
+
| 3.1809 | 0.63 | 7000 | 3.1597 |
|
63 |
+
| 3.0706 | 0.72 | 8000 | 3.1043 |
|
64 |
+
| 3.0185 | 0.81 | 9000 | 3.0578 |
|
65 |
+
| 2.9496 | 0.9 | 10000 | 3.0157 |
|
66 |
+
| 2.9374 | 0.99 | 11000 | 2.9815 |
|
67 |
+
| 2.8794 | 1.08 | 12000 | 2.9487 |
|
68 |
+
| 2.8407 | 1.17 | 13000 | 2.9229 |
|
69 |
+
| 2.8818 | 1.26 | 14000 | 2.8973 |
|
70 |
+
| 2.8167 | 1.35 | 15000 | 2.8730 |
|
71 |
+
| 2.7941 | 1.44 | 16000 | 2.8515 |
|
72 |
+
| 2.7878 | 1.53 | 17000 | 2.8311 |
|
73 |
+
| 2.7894 | 1.62 | 18000 | 2.8113 |
|
74 |
+
| 2.7158 | 1.71 | 19000 | 2.7935 |
|
75 |
+
| 2.7409 | 1.8 | 20000 | 2.7765 |
|
76 |
+
| 2.7349 | 1.89 | 21000 | 2.7613 |
|
77 |
+
| 2.6631 | 1.98 | 22000 | 2.7451 |
|
78 |
+
| 2.6766 | 2.07 | 23000 | 2.7353 |
|
79 |
+
| 2.6405 | 2.16 | 24000 | 2.7231 |
|
80 |
+
| 2.6707 | 2.25 | 25000 | 2.7121 |
|
81 |
+
| 2.6362 | 2.34 | 26000 | 2.7005 |
|
82 |
+
| 2.5997 | 2.43 | 27000 | 2.6904 |
|
83 |
+
| 2.6549 | 2.52 | 28000 | 2.6798 |
|
84 |
+
| 2.6056 | 2.61 | 29000 | 2.6688 |
|
85 |
+
| 2.5722 | 2.7 | 30000 | 2.6594 |
|
86 |
+
| 2.6179 | 2.79 | 31000 | 2.6509 |
|
87 |
+
| 2.6064 | 2.88 | 32000 | 2.6423 |
|
88 |
+
| 2.5836 | 2.97 | 33000 | 2.6340 |
|
89 |
+
| 2.5502 | 3.06 | 34000 | 2.6285 |
|
90 |
+
| 2.5428 | 3.15 | 35000 | 2.6218 |
|
91 |
+
| 2.5342 | 3.24 | 36000 | 2.6160 |
|
92 |
+
| 2.5152 | 3.33 | 37000 | 2.6090 |
|
93 |
+
| 2.5138 | 5.13 | 38000 | 2.5766 |
|
94 |
+
| 2.5032 | 5.27 | 39000 | 2.5683 |
|
95 |
+
| 2.4783 | 5.4 | 40000 | 2.5609 |
|
96 |
+
| 2.4519 | 5.54 | 41000 | 2.5545 |
|
97 |
+
| 2.4918 | 5.67 | 42000 | 2.5472 |
|
98 |
+
| 2.4591 | 5.81 | 43000 | 2.5411 |
|
99 |
+
| 2.4756 | 5.94 | 44000 | 2.5354 |
|
100 |
+
| 2.4434 | 6.08 | 45000 | 2.5345 |
|
101 |
+
| 2.4312 | 6.21 | 46000 | 2.5301 |
|
102 |
+
| 2.4576 | 6.35 | 47000 | 2.5242 |
|
103 |
+
| 2.4343 | 6.48 | 48000 | 2.5192 |
|
104 |
+
| 2.426 | 6.62 | 49000 | 2.5139 |
|
105 |
+
| 2.4136 | 6.75 | 50000 | 2.5084 |
|
106 |
+
| 2.4463 | 6.89 | 51000 | 2.5037 |
|
107 |
+
| 2.345 | 7.02 | 52000 | 2.5016 |
|
108 |
+
| 2.3736 | 7.16 | 53000 | 2.4990 |
|
109 |
+
| 2.4092 | 7.29 | 54000 | 2.4955 |
|
110 |
+
| 2.3689 | 7.43 | 55000 | 2.4917 |
|
111 |
+
| 2.3797 | 7.56 | 56000 | 2.4867 |
|
112 |
+
|
113 |
+
|
114 |
+
### Framework versions
|
115 |
+
|
116 |
+
- Transformers 4.35.2
|
117 |
+
- Pytorch 2.1.2+cu121
|
118 |
+
- Datasets 2.14.5
|
119 |
+
- Tokenizers 0.14.1
|