ayertey01's picture
update model card README.md
bd5cb94
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-53-AsanteTwi-04
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: tw
          split: test
          args: tw
        metrics:
          - name: Wer
            type: wer
            value: 0.625

wav2vec2-large-xlsr-53-AsanteTwi-04

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7250
  • Wer: 0.625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 90

Training results

Training Loss Epoch Step Validation Loss Wer
13.2642 8.33 50 4.7327 1.0
3.1075 16.67 100 3.1680 1.0
2.8849 25.0 150 2.9745 1.0
2.8553 33.33 200 2.9167 1.0
2.8333 41.67 250 2.8538 1.0
2.6501 50.0 300 2.3417 1.0
1.8966 58.33 350 1.1529 0.875
0.9431 66.67 400 0.8519 0.75
0.5951 75.0 450 0.7970 0.625
0.444 83.33 500 0.7250 0.625

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3