Push distilbert base cased trec model
Browse files- README.md +102 -0
- config.json +40 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
thumbnail:
|
5 |
+
tags:
|
6 |
+
- text-classification
|
7 |
+
license: mit
|
8 |
+
datasets:
|
9 |
+
- trec
|
10 |
+
metrics:
|
11 |
+
---
|
12 |
+
|
13 |
+
# TREC 6-class Task: distilbert-base-cased
|
14 |
+
|
15 |
+
## Model description
|
16 |
+
|
17 |
+
A simple base distilBERT model trained on the "trec" dataset.
|
18 |
+
|
19 |
+
## Intended uses & limitations
|
20 |
+
|
21 |
+
#### How to use
|
22 |
+
|
23 |
+
##### Transformers
|
24 |
+
|
25 |
+
```python
|
26 |
+
# Load model and tokenizer
|
27 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
28 |
+
|
29 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
31 |
+
|
32 |
+
# Use pipeline
|
33 |
+
from transformers import pipeline
|
34 |
+
|
35 |
+
model_name = "aychang/distilbert-base-cased-trec-coarse"
|
36 |
+
|
37 |
+
nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name)
|
38 |
+
|
39 |
+
results = nlp(["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"])
|
40 |
+
```
|
41 |
+
|
42 |
+
##### AdaptNLP
|
43 |
+
|
44 |
+
```python
|
45 |
+
from adaptnlp import EasySequenceClassifier
|
46 |
+
|
47 |
+
model_name = "aychang/distilbert-base-cased-trec-coarse"
|
48 |
+
texts = ["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"]
|
49 |
+
|
50 |
+
classifer = EasySequenceClassifier
|
51 |
+
results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2)
|
52 |
+
```
|
53 |
+
|
54 |
+
#### Limitations and bias
|
55 |
+
|
56 |
+
This is minimal language model trained on a benchmark dataset.
|
57 |
+
|
58 |
+
## Training data
|
59 |
+
|
60 |
+
TREC https://huggingface.co/datasets/trec
|
61 |
+
|
62 |
+
## Training procedure
|
63 |
+
|
64 |
+
Preprocessing, hardware used, hyperparameters...
|
65 |
+
#### Hardware
|
66 |
+
One V100
|
67 |
+
|
68 |
+
#### Hyperparameters and Training Args
|
69 |
+
```python
|
70 |
+
from transformers import TrainingArguments
|
71 |
+
|
72 |
+
training_args = TrainingArguments(
|
73 |
+
output_dir='./models',
|
74 |
+
overwrite_output_dir=False,
|
75 |
+
num_train_epochs=2,
|
76 |
+
per_device_train_batch_size=16,
|
77 |
+
per_device_eval_batch_size=16,
|
78 |
+
warmup_steps=500,
|
79 |
+
weight_decay=0.01,
|
80 |
+
evaluation_strategy="steps",
|
81 |
+
logging_dir='./logs',
|
82 |
+
fp16=False,
|
83 |
+
eval_steps=500,
|
84 |
+
save_steps=300000
|
85 |
+
)
|
86 |
+
```
|
87 |
+
|
88 |
+
## Eval results
|
89 |
+
|
90 |
+
```
|
91 |
+
{'epoch': 2.0,
|
92 |
+
'eval_accuracy': 0.97,
|
93 |
+
'eval_f1': array([0.98220641, 0.91620112, 1. , 0.97709924, 0.98678414,
|
94 |
+
0.97560976]),
|
95 |
+
'eval_loss': 0.14275787770748138,
|
96 |
+
'eval_precision': array([0.96503497, 0.96470588, 1. , 0.96969697, 0.98245614,
|
97 |
+
0.96385542]),
|
98 |
+
'eval_recall': array([1. , 0.87234043, 1. , 0.98461538, 0.99115044,
|
99 |
+
0.98765432]),
|
100 |
+
'eval_runtime': 0.9731,
|
101 |
+
'eval_samples_per_second': 513.798}
|
102 |
+
```
|
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-cased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "DESC",
|
13 |
+
"1": "ENTY",
|
14 |
+
"2": "ABBR",
|
15 |
+
"3": "HUM",
|
16 |
+
"4": "NUM",
|
17 |
+
"5": "LOC"
|
18 |
+
},
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"label2id": {
|
21 |
+
"ABBR": 2,
|
22 |
+
"DESC": 0,
|
23 |
+
"ENTY": 1,
|
24 |
+
"HUM": 3,
|
25 |
+
"LOC": 5,
|
26 |
+
"NUM": 4
|
27 |
+
},
|
28 |
+
"max_position_embeddings": 512,
|
29 |
+
"model_type": "distilbert",
|
30 |
+
"n_heads": 12,
|
31 |
+
"n_layers": 6,
|
32 |
+
"output_past": true,
|
33 |
+
"pad_token_id": 0,
|
34 |
+
"qa_dropout": 0.1,
|
35 |
+
"seq_classif_dropout": 0.2,
|
36 |
+
"sinusoidal_pos_embds": false,
|
37 |
+
"tie_weights_": true,
|
38 |
+
"transformers_version": "4.2.2",
|
39 |
+
"vocab_size": 28996
|
40 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8da6e0ad32e33759f59921cee09d4ed9608684f50ffb3feced0cf256f6a3f7d7
|
3 |
+
size 263186580
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "distilbert-base-cased"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12163274fe7b72d50302e6c69fcf07252ae189f29eba56f1c44bbe67d84d02de
|
3 |
+
size 1967
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|