Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +16 -0
- chat_template.json +3 -0
- config.json +51 -0
- generation_config.json +15 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- preprocessor_config.json +29 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +145 -0
- trainer_state.json +2503 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<|box_end|>": 151649,
|
| 3 |
+
"<|box_start|>": 151648,
|
| 4 |
+
"<|endoftext|>": 151643,
|
| 5 |
+
"<|im_end|>": 151645,
|
| 6 |
+
"<|im_start|>": 151644,
|
| 7 |
+
"<|image_pad|>": 151655,
|
| 8 |
+
"<|object_ref_end|>": 151647,
|
| 9 |
+
"<|object_ref_start|>": 151646,
|
| 10 |
+
"<|quad_end|>": 151651,
|
| 11 |
+
"<|quad_start|>": 151650,
|
| 12 |
+
"<|video_pad|>": 151656,
|
| 13 |
+
"<|vision_end|>": 151653,
|
| 14 |
+
"<|vision_pad|>": 151654,
|
| 15 |
+
"<|vision_start|>": 151652
|
| 16 |
+
}
|
chat_template.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
| 3 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/arf/scratch/aykoksal/Qwen2-VL_reasoning",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2VLForConditionalGeneration"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 1536,
|
| 11 |
+
"image_token_id": 151655,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 8960,
|
| 14 |
+
"max_position_embeddings": 32768,
|
| 15 |
+
"max_window_layers": 28,
|
| 16 |
+
"model_type": "qwen2_vl",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 28,
|
| 19 |
+
"num_key_value_heads": 2,
|
| 20 |
+
"rms_norm_eps": 1e-06,
|
| 21 |
+
"rope_scaling": {
|
| 22 |
+
"mrope_section": [
|
| 23 |
+
16,
|
| 24 |
+
24,
|
| 25 |
+
24
|
| 26 |
+
],
|
| 27 |
+
"rope_type": "default",
|
| 28 |
+
"type": "default"
|
| 29 |
+
},
|
| 30 |
+
"rope_theta": 1000000.0,
|
| 31 |
+
"sliding_window": 32768,
|
| 32 |
+
"tie_word_embeddings": true,
|
| 33 |
+
"tokenizer_padding_side": "right",
|
| 34 |
+
"torch_dtype": "bfloat16",
|
| 35 |
+
"transformers_version": "4.50.0.dev0",
|
| 36 |
+
"use_cache": false,
|
| 37 |
+
"use_sliding_window": false,
|
| 38 |
+
"video_token_id": 151656,
|
| 39 |
+
"vision_config": {
|
| 40 |
+
"hidden_size": 1536,
|
| 41 |
+
"in_chans": 3,
|
| 42 |
+
"model_type": "qwen2_vl",
|
| 43 |
+
"spatial_patch_size": 14,
|
| 44 |
+
"torch_dtype": "float32"
|
| 45 |
+
},
|
| 46 |
+
"vision_end_token_id": 151653,
|
| 47 |
+
"vision_lr": 2e-06,
|
| 48 |
+
"vision_start_token_id": 151652,
|
| 49 |
+
"vision_token_id": 151654,
|
| 50 |
+
"vocab_size": 151936
|
| 51 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attn_implementation": "flash_attention_2",
|
| 3 |
+
"bos_token_id": 151643,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": [
|
| 6 |
+
151645,
|
| 7 |
+
151643
|
| 8 |
+
],
|
| 9 |
+
"pad_token_id": 151643,
|
| 10 |
+
"temperature": 0.01,
|
| 11 |
+
"top_k": 1,
|
| 12 |
+
"top_p": 0.001,
|
| 13 |
+
"transformers_version": "4.50.0.dev0",
|
| 14 |
+
"use_cache": false
|
| 15 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:da359c4e881250cf326105688da5e6e743c3bf4142c21fdfe0a31472ecac7af2
|
| 3 |
+
size 4418050848
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_convert_rgb": true,
|
| 3 |
+
"do_normalize": true,
|
| 4 |
+
"do_rescale": true,
|
| 5 |
+
"do_resize": true,
|
| 6 |
+
"image_mean": [
|
| 7 |
+
0.48145466,
|
| 8 |
+
0.4578275,
|
| 9 |
+
0.40821073
|
| 10 |
+
],
|
| 11 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
| 12 |
+
"image_std": [
|
| 13 |
+
0.26862954,
|
| 14 |
+
0.26130258,
|
| 15 |
+
0.27577711
|
| 16 |
+
],
|
| 17 |
+
"max_pixels": 2359296,
|
| 18 |
+
"merge_size": 2,
|
| 19 |
+
"min_pixels": 3136,
|
| 20 |
+
"patch_size": 14,
|
| 21 |
+
"processor_class": "Qwen2VLProcessor",
|
| 22 |
+
"resample": 3,
|
| 23 |
+
"rescale_factor": 0.00392156862745098,
|
| 24 |
+
"size": {
|
| 25 |
+
"longest_edge": 12845056,
|
| 26 |
+
"shortest_edge": 3136
|
| 27 |
+
},
|
| 28 |
+
"temporal_patch_size": 2
|
| 29 |
+
}
|
scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38b1addc9198ec40e943b2c8e649fcf462019a3378ad7686f31c4f5ad3752a24
|
| 3 |
+
size 1064
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:88a3a6fcb80132f76da8aa40cdc3fccd7e5d8468ef15421f5b0c2715e85217d2
|
| 3 |
+
size 11420538
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"151643": {
|
| 5 |
+
"content": "<|endoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"151644": {
|
| 13 |
+
"content": "<|im_start|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"151645": {
|
| 21 |
+
"content": "<|im_end|>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"151646": {
|
| 29 |
+
"content": "<|object_ref_start|>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"151647": {
|
| 37 |
+
"content": "<|object_ref_end|>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"151648": {
|
| 45 |
+
"content": "<|box_start|>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"151649": {
|
| 53 |
+
"content": "<|box_end|>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
"151650": {
|
| 61 |
+
"content": "<|quad_start|>",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": false,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": true
|
| 67 |
+
},
|
| 68 |
+
"151651": {
|
| 69 |
+
"content": "<|quad_end|>",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": false,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": true
|
| 75 |
+
},
|
| 76 |
+
"151652": {
|
| 77 |
+
"content": "<|vision_start|>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": true
|
| 83 |
+
},
|
| 84 |
+
"151653": {
|
| 85 |
+
"content": "<|vision_end|>",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": false,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": true
|
| 91 |
+
},
|
| 92 |
+
"151654": {
|
| 93 |
+
"content": "<|vision_pad|>",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": false,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": true
|
| 99 |
+
},
|
| 100 |
+
"151655": {
|
| 101 |
+
"content": "<|image_pad|>",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": false,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": true
|
| 107 |
+
},
|
| 108 |
+
"151656": {
|
| 109 |
+
"content": "<|video_pad|>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": true
|
| 115 |
+
}
|
| 116 |
+
},
|
| 117 |
+
"additional_special_tokens": [
|
| 118 |
+
"<|im_start|>",
|
| 119 |
+
"<|im_end|>",
|
| 120 |
+
"<|object_ref_start|>",
|
| 121 |
+
"<|object_ref_end|>",
|
| 122 |
+
"<|box_start|>",
|
| 123 |
+
"<|box_end|>",
|
| 124 |
+
"<|quad_start|>",
|
| 125 |
+
"<|quad_end|>",
|
| 126 |
+
"<|vision_start|>",
|
| 127 |
+
"<|vision_end|>",
|
| 128 |
+
"<|vision_pad|>",
|
| 129 |
+
"<|image_pad|>",
|
| 130 |
+
"<|video_pad|>"
|
| 131 |
+
],
|
| 132 |
+
"bos_token": null,
|
| 133 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
| 134 |
+
"clean_up_tokenization_spaces": false,
|
| 135 |
+
"eos_token": "<|im_end|>",
|
| 136 |
+
"errors": "replace",
|
| 137 |
+
"extra_special_tokens": {},
|
| 138 |
+
"model_max_length": 32768,
|
| 139 |
+
"pad_token": "<|endoftext|>",
|
| 140 |
+
"padding_side": "right",
|
| 141 |
+
"processor_class": "Qwen2VLProcessor",
|
| 142 |
+
"split_special_tokens": false,
|
| 143 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 144 |
+
"unk_token": null
|
| 145 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,2503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 5.0,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 190,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"completion_length": 511.59375,
|
| 13 |
+
"epoch": 0.02631578947368421,
|
| 14 |
+
"grad_norm": 0.0,
|
| 15 |
+
"kl": 0.0,
|
| 16 |
+
"learning_rate": 9.973684210526315e-07,
|
| 17 |
+
"loss": 0.0,
|
| 18 |
+
"reward": 2.0,
|
| 19 |
+
"reward_std": 0.0,
|
| 20 |
+
"rewards/accuracy_reward": 1.0,
|
| 21 |
+
"rewards/format_reward": 1.0,
|
| 22 |
+
"step": 1
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"completion_length": 506.4375,
|
| 26 |
+
"epoch": 0.05263157894736842,
|
| 27 |
+
"grad_norm": 1.1859753641586046,
|
| 28 |
+
"kl": 0.0,
|
| 29 |
+
"learning_rate": 9.947368421052631e-07,
|
| 30 |
+
"loss": 0.0,
|
| 31 |
+
"reward": 1.90625,
|
| 32 |
+
"reward_std": 0.13466878235340118,
|
| 33 |
+
"rewards/accuracy_reward": 0.90625,
|
| 34 |
+
"rewards/format_reward": 1.0,
|
| 35 |
+
"step": 2
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"completion_length": 510.25,
|
| 39 |
+
"epoch": 0.07894736842105263,
|
| 40 |
+
"grad_norm": 0.01741859728971303,
|
| 41 |
+
"kl": 0.00041961669921875,
|
| 42 |
+
"learning_rate": 9.921052631578947e-07,
|
| 43 |
+
"loss": 0.0,
|
| 44 |
+
"reward": 1.875,
|
| 45 |
+
"reward_std": 0.0,
|
| 46 |
+
"rewards/accuracy_reward": 0.90625,
|
| 47 |
+
"rewards/format_reward": 0.96875,
|
| 48 |
+
"step": 3
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"completion_length": 500.78125,
|
| 52 |
+
"epoch": 0.10526315789473684,
|
| 53 |
+
"grad_norm": 1.5842460584085565,
|
| 54 |
+
"kl": 0.0003948211669921875,
|
| 55 |
+
"learning_rate": 9.894736842105263e-07,
|
| 56 |
+
"loss": 0.0,
|
| 57 |
+
"reward": 1.75,
|
| 58 |
+
"reward_std": 0.19716878235340118,
|
| 59 |
+
"rewards/accuracy_reward": 0.75,
|
| 60 |
+
"rewards/format_reward": 1.0,
|
| 61 |
+
"step": 4
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"completion_length": 513.125,
|
| 65 |
+
"epoch": 0.13157894736842105,
|
| 66 |
+
"grad_norm": 0.018266102639759176,
|
| 67 |
+
"kl": 0.00038909912109375,
|
| 68 |
+
"learning_rate": 9.868421052631579e-07,
|
| 69 |
+
"loss": 0.0,
|
| 70 |
+
"reward": 2.0,
|
| 71 |
+
"reward_std": 0.0,
|
| 72 |
+
"rewards/accuracy_reward": 1.0,
|
| 73 |
+
"rewards/format_reward": 1.0,
|
| 74 |
+
"step": 5
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"completion_length": 513.5,
|
| 78 |
+
"epoch": 0.15789473684210525,
|
| 79 |
+
"grad_norm": 0.013048600742559903,
|
| 80 |
+
"kl": 0.0004444122314453125,
|
| 81 |
+
"learning_rate": 9.842105263157894e-07,
|
| 82 |
+
"loss": 0.0,
|
| 83 |
+
"reward": 1.875,
|
| 84 |
+
"reward_std": 0.0,
|
| 85 |
+
"rewards/accuracy_reward": 0.875,
|
| 86 |
+
"rewards/format_reward": 1.0,
|
| 87 |
+
"step": 6
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"completion_length": 510.625,
|
| 91 |
+
"epoch": 0.18421052631578946,
|
| 92 |
+
"grad_norm": 1.2716482982161232,
|
| 93 |
+
"kl": 0.000408172607421875,
|
| 94 |
+
"learning_rate": 9.81578947368421e-07,
|
| 95 |
+
"loss": 0.0,
|
| 96 |
+
"reward": 1.90625,
|
| 97 |
+
"reward_std": 0.0625,
|
| 98 |
+
"rewards/accuracy_reward": 0.90625,
|
| 99 |
+
"rewards/format_reward": 1.0,
|
| 100 |
+
"step": 7
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"completion_length": 513.0,
|
| 104 |
+
"epoch": 0.21052631578947367,
|
| 105 |
+
"grad_norm": 0.01666083229438018,
|
| 106 |
+
"kl": 0.0004787445068359375,
|
| 107 |
+
"learning_rate": 9.789473684210526e-07,
|
| 108 |
+
"loss": 0.0,
|
| 109 |
+
"reward": 2.0,
|
| 110 |
+
"reward_std": 0.0,
|
| 111 |
+
"rewards/accuracy_reward": 1.0,
|
| 112 |
+
"rewards/format_reward": 1.0,
|
| 113 |
+
"step": 8
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"completion_length": 503.65625,
|
| 117 |
+
"epoch": 0.23684210526315788,
|
| 118 |
+
"grad_norm": 1.5384360001027126,
|
| 119 |
+
"kl": 0.0005340576171875,
|
| 120 |
+
"learning_rate": 9.763157894736842e-07,
|
| 121 |
+
"loss": 0.0,
|
| 122 |
+
"reward": 1.8125,
|
| 123 |
+
"reward_std": 0.21650634706020355,
|
| 124 |
+
"rewards/accuracy_reward": 0.8125,
|
| 125 |
+
"rewards/format_reward": 1.0,
|
| 126 |
+
"step": 9
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"completion_length": 497.0,
|
| 130 |
+
"epoch": 0.2631578947368421,
|
| 131 |
+
"grad_norm": 0.8586709618188666,
|
| 132 |
+
"kl": 0.0004787445068359375,
|
| 133 |
+
"learning_rate": 9.736842105263158e-07,
|
| 134 |
+
"loss": 0.0,
|
| 135 |
+
"reward": 1.90625,
|
| 136 |
+
"reward_std": 0.0625,
|
| 137 |
+
"rewards/accuracy_reward": 0.90625,
|
| 138 |
+
"rewards/format_reward": 1.0,
|
| 139 |
+
"step": 10
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"completion_length": 500.0,
|
| 143 |
+
"epoch": 0.2894736842105263,
|
| 144 |
+
"grad_norm": 3.3263216841342786,
|
| 145 |
+
"kl": 0.000499725341796875,
|
| 146 |
+
"learning_rate": 9.710526315789474e-07,
|
| 147 |
+
"loss": 0.0,
|
| 148 |
+
"reward": 1.9375,
|
| 149 |
+
"reward_std": 0.125,
|
| 150 |
+
"rewards/accuracy_reward": 0.9375,
|
| 151 |
+
"rewards/format_reward": 1.0,
|
| 152 |
+
"step": 11
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"completion_length": 478.8125,
|
| 156 |
+
"epoch": 0.3157894736842105,
|
| 157 |
+
"grad_norm": 1.4312975247602437,
|
| 158 |
+
"kl": 0.000457763671875,
|
| 159 |
+
"learning_rate": 9.68421052631579e-07,
|
| 160 |
+
"loss": 0.0,
|
| 161 |
+
"reward": 1.96875,
|
| 162 |
+
"reward_std": 0.0625,
|
| 163 |
+
"rewards/accuracy_reward": 0.96875,
|
| 164 |
+
"rewards/format_reward": 1.0,
|
| 165 |
+
"step": 12
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"completion_length": 521.71875,
|
| 169 |
+
"epoch": 0.34210526315789475,
|
| 170 |
+
"grad_norm": 0.9553780876367552,
|
| 171 |
+
"kl": 0.0006103515625,
|
| 172 |
+
"learning_rate": 9.657894736842105e-07,
|
| 173 |
+
"loss": 0.0,
|
| 174 |
+
"reward": 1.96875,
|
| 175 |
+
"reward_std": 0.0625,
|
| 176 |
+
"rewards/accuracy_reward": 0.96875,
|
| 177 |
+
"rewards/format_reward": 1.0,
|
| 178 |
+
"step": 13
|
| 179 |
+
},
|
| 180 |
+
{
|
| 181 |
+
"completion_length": 479.21875,
|
| 182 |
+
"epoch": 0.3684210526315789,
|
| 183 |
+
"grad_norm": 0.04637496251159502,
|
| 184 |
+
"kl": 0.000560760498046875,
|
| 185 |
+
"learning_rate": 9.63157894736842e-07,
|
| 186 |
+
"loss": 0.0,
|
| 187 |
+
"reward": 2.0,
|
| 188 |
+
"reward_std": 0.0,
|
| 189 |
+
"rewards/accuracy_reward": 1.0,
|
| 190 |
+
"rewards/format_reward": 1.0,
|
| 191 |
+
"step": 14
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"completion_length": 497.9375,
|
| 195 |
+
"epoch": 0.39473684210526316,
|
| 196 |
+
"grad_norm": 0.016384627376893796,
|
| 197 |
+
"kl": 0.000553131103515625,
|
| 198 |
+
"learning_rate": 9.605263157894737e-07,
|
| 199 |
+
"loss": 0.0,
|
| 200 |
+
"reward": 1.875,
|
| 201 |
+
"reward_std": 0.0,
|
| 202 |
+
"rewards/accuracy_reward": 0.875,
|
| 203 |
+
"rewards/format_reward": 1.0,
|
| 204 |
+
"step": 15
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"completion_length": 503.09375,
|
| 208 |
+
"epoch": 0.42105263157894735,
|
| 209 |
+
"grad_norm": 4.266561310972031,
|
| 210 |
+
"kl": 0.000637054443359375,
|
| 211 |
+
"learning_rate": 9.578947368421053e-07,
|
| 212 |
+
"loss": 0.0,
|
| 213 |
+
"reward": 1.875,
|
| 214 |
+
"reward_std": 0.125,
|
| 215 |
+
"rewards/accuracy_reward": 0.875,
|
| 216 |
+
"rewards/format_reward": 1.0,
|
| 217 |
+
"step": 16
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"completion_length": 524.1875,
|
| 221 |
+
"epoch": 0.4473684210526316,
|
| 222 |
+
"grad_norm": 1.5312023004868032,
|
| 223 |
+
"kl": 0.00067901611328125,
|
| 224 |
+
"learning_rate": 9.552631578947368e-07,
|
| 225 |
+
"loss": 0.0,
|
| 226 |
+
"reward": 1.9375,
|
| 227 |
+
"reward_std": 0.07216878235340118,
|
| 228 |
+
"rewards/accuracy_reward": 0.9375,
|
| 229 |
+
"rewards/format_reward": 1.0,
|
| 230 |
+
"step": 17
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"completion_length": 502.40625,
|
| 234 |
+
"epoch": 0.47368421052631576,
|
| 235 |
+
"grad_norm": 0.03266540421884785,
|
| 236 |
+
"kl": 0.00070953369140625,
|
| 237 |
+
"learning_rate": 9.526315789473683e-07,
|
| 238 |
+
"loss": 0.0,
|
| 239 |
+
"reward": 2.0,
|
| 240 |
+
"reward_std": 0.0,
|
| 241 |
+
"rewards/accuracy_reward": 1.0,
|
| 242 |
+
"rewards/format_reward": 1.0,
|
| 243 |
+
"step": 18
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"completion_length": 492.34375,
|
| 247 |
+
"epoch": 0.5,
|
| 248 |
+
"grad_norm": 1.657170732210159,
|
| 249 |
+
"kl": 0.000843048095703125,
|
| 250 |
+
"learning_rate": 9.499999999999999e-07,
|
| 251 |
+
"loss": 0.0,
|
| 252 |
+
"reward": 1.96875,
|
| 253 |
+
"reward_std": 0.0625,
|
| 254 |
+
"rewards/accuracy_reward": 1.0,
|
| 255 |
+
"rewards/format_reward": 0.96875,
|
| 256 |
+
"step": 19
|
| 257 |
+
},
|
| 258 |
+
{
|
| 259 |
+
"completion_length": 490.3125,
|
| 260 |
+
"epoch": 0.5263157894736842,
|
| 261 |
+
"grad_norm": 0.026300116989117366,
|
| 262 |
+
"kl": 0.00086212158203125,
|
| 263 |
+
"learning_rate": 9.473684210526315e-07,
|
| 264 |
+
"loss": 0.0,
|
| 265 |
+
"reward": 2.0,
|
| 266 |
+
"reward_std": 0.0,
|
| 267 |
+
"rewards/accuracy_reward": 1.0,
|
| 268 |
+
"rewards/format_reward": 1.0,
|
| 269 |
+
"step": 20
|
| 270 |
+
},
|
| 271 |
+
{
|
| 272 |
+
"completion_length": 496.875,
|
| 273 |
+
"epoch": 0.5526315789473685,
|
| 274 |
+
"grad_norm": 1.0089214071204007,
|
| 275 |
+
"kl": 0.000843048095703125,
|
| 276 |
+
"learning_rate": 9.447368421052632e-07,
|
| 277 |
+
"loss": 0.0,
|
| 278 |
+
"reward": 1.9375,
|
| 279 |
+
"reward_std": 0.07216878235340118,
|
| 280 |
+
"rewards/accuracy_reward": 0.9375,
|
| 281 |
+
"rewards/format_reward": 1.0,
|
| 282 |
+
"step": 21
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"completion_length": 505.3125,
|
| 286 |
+
"epoch": 0.5789473684210527,
|
| 287 |
+
"grad_norm": 2.2869920085637188,
|
| 288 |
+
"kl": 0.00106048583984375,
|
| 289 |
+
"learning_rate": 9.421052631578948e-07,
|
| 290 |
+
"loss": 0.0,
|
| 291 |
+
"reward": 1.84375,
|
| 292 |
+
"reward_std": 0.0625,
|
| 293 |
+
"rewards/accuracy_reward": 0.84375,
|
| 294 |
+
"rewards/format_reward": 1.0,
|
| 295 |
+
"step": 22
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"completion_length": 541.65625,
|
| 299 |
+
"epoch": 0.6052631578947368,
|
| 300 |
+
"grad_norm": 0.6352260789447539,
|
| 301 |
+
"kl": 0.00102996826171875,
|
| 302 |
+
"learning_rate": 9.394736842105263e-07,
|
| 303 |
+
"loss": 0.0,
|
| 304 |
+
"reward": 1.96875,
|
| 305 |
+
"reward_std": 0.0625,
|
| 306 |
+
"rewards/accuracy_reward": 1.0,
|
| 307 |
+
"rewards/format_reward": 0.96875,
|
| 308 |
+
"step": 23
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"completion_length": 514.125,
|
| 312 |
+
"epoch": 0.631578947368421,
|
| 313 |
+
"grad_norm": 0.020950649700612674,
|
| 314 |
+
"kl": 0.00090789794921875,
|
| 315 |
+
"learning_rate": 9.368421052631579e-07,
|
| 316 |
+
"loss": 0.0,
|
| 317 |
+
"reward": 2.0,
|
| 318 |
+
"reward_std": 0.0,
|
| 319 |
+
"rewards/accuracy_reward": 1.0,
|
| 320 |
+
"rewards/format_reward": 1.0,
|
| 321 |
+
"step": 24
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"completion_length": 508.875,
|
| 325 |
+
"epoch": 0.6578947368421053,
|
| 326 |
+
"grad_norm": 0.02679766826877623,
|
| 327 |
+
"kl": 0.001007080078125,
|
| 328 |
+
"learning_rate": 9.342105263157895e-07,
|
| 329 |
+
"loss": 0.0,
|
| 330 |
+
"reward": 2.0,
|
| 331 |
+
"reward_std": 0.0,
|
| 332 |
+
"rewards/accuracy_reward": 1.0,
|
| 333 |
+
"rewards/format_reward": 1.0,
|
| 334 |
+
"step": 25
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"completion_length": 512.8125,
|
| 338 |
+
"epoch": 0.6842105263157895,
|
| 339 |
+
"grad_norm": 0.9944506905480381,
|
| 340 |
+
"kl": 0.00101470947265625,
|
| 341 |
+
"learning_rate": 9.31578947368421e-07,
|
| 342 |
+
"loss": 0.0,
|
| 343 |
+
"reward": 1.96875,
|
| 344 |
+
"reward_std": 0.0625,
|
| 345 |
+
"rewards/accuracy_reward": 0.96875,
|
| 346 |
+
"rewards/format_reward": 1.0,
|
| 347 |
+
"step": 26
|
| 348 |
+
},
|
| 349 |
+
{
|
| 350 |
+
"completion_length": 506.875,
|
| 351 |
+
"epoch": 0.7105263157894737,
|
| 352 |
+
"grad_norm": 0.968143218853605,
|
| 353 |
+
"kl": 0.00107574462890625,
|
| 354 |
+
"learning_rate": 9.289473684210526e-07,
|
| 355 |
+
"loss": 0.0,
|
| 356 |
+
"reward": 1.90625,
|
| 357 |
+
"reward_std": 0.0625,
|
| 358 |
+
"rewards/accuracy_reward": 0.90625,
|
| 359 |
+
"rewards/format_reward": 1.0,
|
| 360 |
+
"step": 27
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"completion_length": 485.5,
|
| 364 |
+
"epoch": 0.7368421052631579,
|
| 365 |
+
"grad_norm": 1.0987810816945758,
|
| 366 |
+
"kl": 0.001129150390625,
|
| 367 |
+
"learning_rate": 9.263157894736841e-07,
|
| 368 |
+
"loss": 0.0,
|
| 369 |
+
"reward": 1.96875,
|
| 370 |
+
"reward_std": 0.0625,
|
| 371 |
+
"rewards/accuracy_reward": 0.96875,
|
| 372 |
+
"rewards/format_reward": 1.0,
|
| 373 |
+
"step": 28
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"completion_length": 502.09375,
|
| 377 |
+
"epoch": 0.7631578947368421,
|
| 378 |
+
"grad_norm": 0.027645198038216884,
|
| 379 |
+
"kl": 0.00115203857421875,
|
| 380 |
+
"learning_rate": 9.236842105263157e-07,
|
| 381 |
+
"loss": 0.0,
|
| 382 |
+
"reward": 2.0,
|
| 383 |
+
"reward_std": 0.0,
|
| 384 |
+
"rewards/accuracy_reward": 1.0,
|
| 385 |
+
"rewards/format_reward": 1.0,
|
| 386 |
+
"step": 29
|
| 387 |
+
},
|
| 388 |
+
{
|
| 389 |
+
"completion_length": 512.3125,
|
| 390 |
+
"epoch": 0.7894736842105263,
|
| 391 |
+
"grad_norm": 0.04172906532475141,
|
| 392 |
+
"kl": 0.001129150390625,
|
| 393 |
+
"learning_rate": 9.210526315789473e-07,
|
| 394 |
+
"loss": 0.0,
|
| 395 |
+
"reward": 2.0,
|
| 396 |
+
"reward_std": 0.0,
|
| 397 |
+
"rewards/accuracy_reward": 1.0,
|
| 398 |
+
"rewards/format_reward": 1.0,
|
| 399 |
+
"step": 30
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"completion_length": 511.8125,
|
| 403 |
+
"epoch": 0.8157894736842105,
|
| 404 |
+
"grad_norm": 1.4555609303743895,
|
| 405 |
+
"kl": 0.00112152099609375,
|
| 406 |
+
"learning_rate": 9.184210526315789e-07,
|
| 407 |
+
"loss": 0.0,
|
| 408 |
+
"reward": 1.96875,
|
| 409 |
+
"reward_std": 0.0625,
|
| 410 |
+
"rewards/accuracy_reward": 0.96875,
|
| 411 |
+
"rewards/format_reward": 1.0,
|
| 412 |
+
"step": 31
|
| 413 |
+
},
|
| 414 |
+
{
|
| 415 |
+
"completion_length": 511.5,
|
| 416 |
+
"epoch": 0.8421052631578947,
|
| 417 |
+
"grad_norm": 0.9929122661974509,
|
| 418 |
+
"kl": 0.00118255615234375,
|
| 419 |
+
"learning_rate": 9.157894736842105e-07,
|
| 420 |
+
"loss": 0.0,
|
| 421 |
+
"reward": 1.875,
|
| 422 |
+
"reward_std": 0.125,
|
| 423 |
+
"rewards/accuracy_reward": 0.90625,
|
| 424 |
+
"rewards/format_reward": 0.96875,
|
| 425 |
+
"step": 32
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"completion_length": 512.8125,
|
| 429 |
+
"epoch": 0.868421052631579,
|
| 430 |
+
"grad_norm": 0.6447662126840653,
|
| 431 |
+
"kl": 0.0010833740234375,
|
| 432 |
+
"learning_rate": 9.13157894736842e-07,
|
| 433 |
+
"loss": 0.0,
|
| 434 |
+
"reward": 1.96875,
|
| 435 |
+
"reward_std": 0.0625,
|
| 436 |
+
"rewards/accuracy_reward": 1.0,
|
| 437 |
+
"rewards/format_reward": 0.96875,
|
| 438 |
+
"step": 33
|
| 439 |
+
},
|
| 440 |
+
{
|
| 441 |
+
"completion_length": 490.28125,
|
| 442 |
+
"epoch": 0.8947368421052632,
|
| 443 |
+
"grad_norm": 0.03130511301152833,
|
| 444 |
+
"kl": 0.001373291015625,
|
| 445 |
+
"learning_rate": 9.105263157894737e-07,
|
| 446 |
+
"loss": 0.0001,
|
| 447 |
+
"reward": 2.0,
|
| 448 |
+
"reward_std": 0.0,
|
| 449 |
+
"rewards/accuracy_reward": 1.0,
|
| 450 |
+
"rewards/format_reward": 1.0,
|
| 451 |
+
"step": 34
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"completion_length": 492.34375,
|
| 455 |
+
"epoch": 0.9210526315789473,
|
| 456 |
+
"grad_norm": 0.03731473780437261,
|
| 457 |
+
"kl": 0.001312255859375,
|
| 458 |
+
"learning_rate": 9.078947368421053e-07,
|
| 459 |
+
"loss": 0.0001,
|
| 460 |
+
"reward": 2.0,
|
| 461 |
+
"reward_std": 0.0,
|
| 462 |
+
"rewards/accuracy_reward": 1.0,
|
| 463 |
+
"rewards/format_reward": 1.0,
|
| 464 |
+
"step": 35
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"completion_length": 500.09375,
|
| 468 |
+
"epoch": 0.9473684210526315,
|
| 469 |
+
"grad_norm": 0.8048521628683286,
|
| 470 |
+
"kl": 0.001373291015625,
|
| 471 |
+
"learning_rate": 9.052631578947368e-07,
|
| 472 |
+
"loss": 0.0001,
|
| 473 |
+
"reward": 1.9375,
|
| 474 |
+
"reward_std": 0.07216878235340118,
|
| 475 |
+
"rewards/accuracy_reward": 0.9375,
|
| 476 |
+
"rewards/format_reward": 1.0,
|
| 477 |
+
"step": 36
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"completion_length": 497.09375,
|
| 481 |
+
"epoch": 0.9736842105263158,
|
| 482 |
+
"grad_norm": 1.0588152232155654,
|
| 483 |
+
"kl": 0.00146484375,
|
| 484 |
+
"learning_rate": 9.026315789473684e-07,
|
| 485 |
+
"loss": 0.0001,
|
| 486 |
+
"reward": 1.96875,
|
| 487 |
+
"reward_std": 0.0625,
|
| 488 |
+
"rewards/accuracy_reward": 0.96875,
|
| 489 |
+
"rewards/format_reward": 1.0,
|
| 490 |
+
"step": 37
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"completion_length": 533.0,
|
| 494 |
+
"epoch": 1.0,
|
| 495 |
+
"grad_norm": 1.7019611225357512,
|
| 496 |
+
"kl": 0.00144195556640625,
|
| 497 |
+
"learning_rate": 9e-07,
|
| 498 |
+
"loss": 0.0001,
|
| 499 |
+
"reward": 2.0,
|
| 500 |
+
"reward_std": 0.10000000149011612,
|
| 501 |
+
"rewards/accuracy_reward": 1.0,
|
| 502 |
+
"rewards/format_reward": 1.0,
|
| 503 |
+
"step": 38
|
| 504 |
+
},
|
| 505 |
+
{
|
| 506 |
+
"completion_length": 513.90625,
|
| 507 |
+
"epoch": 1.0263157894736843,
|
| 508 |
+
"grad_norm": 0.02315223199099485,
|
| 509 |
+
"kl": 0.00136566162109375,
|
| 510 |
+
"learning_rate": 8.973684210526315e-07,
|
| 511 |
+
"loss": 0.0001,
|
| 512 |
+
"reward": 2.0,
|
| 513 |
+
"reward_std": 0.0,
|
| 514 |
+
"rewards/accuracy_reward": 1.0,
|
| 515 |
+
"rewards/format_reward": 1.0,
|
| 516 |
+
"step": 39
|
| 517 |
+
},
|
| 518 |
+
{
|
| 519 |
+
"completion_length": 484.03125,
|
| 520 |
+
"epoch": 1.0526315789473684,
|
| 521 |
+
"grad_norm": 0.5037354331914335,
|
| 522 |
+
"kl": 0.00136566162109375,
|
| 523 |
+
"learning_rate": 8.947368421052631e-07,
|
| 524 |
+
"loss": 0.0001,
|
| 525 |
+
"reward": 2.0,
|
| 526 |
+
"reward_std": 0.0,
|
| 527 |
+
"rewards/accuracy_reward": 1.0,
|
| 528 |
+
"rewards/format_reward": 1.0,
|
| 529 |
+
"step": 40
|
| 530 |
+
},
|
| 531 |
+
{
|
| 532 |
+
"completion_length": 498.09375,
|
| 533 |
+
"epoch": 1.0789473684210527,
|
| 534 |
+
"grad_norm": 1.2181702218163735,
|
| 535 |
+
"kl": 0.00150299072265625,
|
| 536 |
+
"learning_rate": 8.921052631578947e-07,
|
| 537 |
+
"loss": 0.0001,
|
| 538 |
+
"reward": 1.78125,
|
| 539 |
+
"reward_std": 0.13466878235340118,
|
| 540 |
+
"rewards/accuracy_reward": 0.8125,
|
| 541 |
+
"rewards/format_reward": 0.96875,
|
| 542 |
+
"step": 41
|
| 543 |
+
},
|
| 544 |
+
{
|
| 545 |
+
"completion_length": 520.96875,
|
| 546 |
+
"epoch": 1.1052631578947367,
|
| 547 |
+
"grad_norm": 3.2884258137508184,
|
| 548 |
+
"kl": 0.001495361328125,
|
| 549 |
+
"learning_rate": 8.894736842105263e-07,
|
| 550 |
+
"loss": 0.0001,
|
| 551 |
+
"reward": 1.9375,
|
| 552 |
+
"reward_std": 0.125,
|
| 553 |
+
"rewards/accuracy_reward": 0.9375,
|
| 554 |
+
"rewards/format_reward": 1.0,
|
| 555 |
+
"step": 42
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"completion_length": 518.21875,
|
| 559 |
+
"epoch": 1.131578947368421,
|
| 560 |
+
"grad_norm": 1.762389574763672,
|
| 561 |
+
"kl": 0.00171661376953125,
|
| 562 |
+
"learning_rate": 8.868421052631579e-07,
|
| 563 |
+
"loss": 0.0001,
|
| 564 |
+
"reward": 1.875,
|
| 565 |
+
"reward_std": 0.125,
|
| 566 |
+
"rewards/accuracy_reward": 0.875,
|
| 567 |
+
"rewards/format_reward": 1.0,
|
| 568 |
+
"step": 43
|
| 569 |
+
},
|
| 570 |
+
{
|
| 571 |
+
"completion_length": 514.15625,
|
| 572 |
+
"epoch": 1.1578947368421053,
|
| 573 |
+
"grad_norm": 0.027114452970964015,
|
| 574 |
+
"kl": 0.00168609619140625,
|
| 575 |
+
"learning_rate": 8.842105263157895e-07,
|
| 576 |
+
"loss": 0.0001,
|
| 577 |
+
"reward": 2.0,
|
| 578 |
+
"reward_std": 0.0,
|
| 579 |
+
"rewards/accuracy_reward": 1.0,
|
| 580 |
+
"rewards/format_reward": 1.0,
|
| 581 |
+
"step": 44
|
| 582 |
+
},
|
| 583 |
+
{
|
| 584 |
+
"completion_length": 496.59375,
|
| 585 |
+
"epoch": 1.1842105263157894,
|
| 586 |
+
"grad_norm": 0.026564768246094845,
|
| 587 |
+
"kl": 0.00182342529296875,
|
| 588 |
+
"learning_rate": 8.815789473684209e-07,
|
| 589 |
+
"loss": 0.0001,
|
| 590 |
+
"reward": 2.0,
|
| 591 |
+
"reward_std": 0.0,
|
| 592 |
+
"rewards/accuracy_reward": 1.0,
|
| 593 |
+
"rewards/format_reward": 1.0,
|
| 594 |
+
"step": 45
|
| 595 |
+
},
|
| 596 |
+
{
|
| 597 |
+
"completion_length": 504.6875,
|
| 598 |
+
"epoch": 1.2105263157894737,
|
| 599 |
+
"grad_norm": 1.8979762571267376,
|
| 600 |
+
"kl": 0.0017852783203125,
|
| 601 |
+
"learning_rate": 8.789473684210525e-07,
|
| 602 |
+
"loss": 0.0001,
|
| 603 |
+
"reward": 1.96875,
|
| 604 |
+
"reward_std": 0.0625,
|
| 605 |
+
"rewards/accuracy_reward": 1.0,
|
| 606 |
+
"rewards/format_reward": 0.96875,
|
| 607 |
+
"step": 46
|
| 608 |
+
},
|
| 609 |
+
{
|
| 610 |
+
"completion_length": 501.84375,
|
| 611 |
+
"epoch": 1.236842105263158,
|
| 612 |
+
"grad_norm": 0.03582040873644126,
|
| 613 |
+
"kl": 0.0017242431640625,
|
| 614 |
+
"learning_rate": 8.763157894736841e-07,
|
| 615 |
+
"loss": 0.0001,
|
| 616 |
+
"reward": 2.0,
|
| 617 |
+
"reward_std": 0.0,
|
| 618 |
+
"rewards/accuracy_reward": 1.0,
|
| 619 |
+
"rewards/format_reward": 1.0,
|
| 620 |
+
"step": 47
|
| 621 |
+
},
|
| 622 |
+
{
|
| 623 |
+
"completion_length": 503.53125,
|
| 624 |
+
"epoch": 1.263157894736842,
|
| 625 |
+
"grad_norm": 2.144284016014784,
|
| 626 |
+
"kl": 0.002044677734375,
|
| 627 |
+
"learning_rate": 8.736842105263158e-07,
|
| 628 |
+
"loss": 0.0001,
|
| 629 |
+
"reward": 1.90625,
|
| 630 |
+
"reward_std": 0.13466878235340118,
|
| 631 |
+
"rewards/accuracy_reward": 0.90625,
|
| 632 |
+
"rewards/format_reward": 1.0,
|
| 633 |
+
"step": 48
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"completion_length": 504.90625,
|
| 637 |
+
"epoch": 1.2894736842105263,
|
| 638 |
+
"grad_norm": 0.03267048642715876,
|
| 639 |
+
"kl": 0.001922607421875,
|
| 640 |
+
"learning_rate": 8.710526315789474e-07,
|
| 641 |
+
"loss": 0.0001,
|
| 642 |
+
"reward": 2.0,
|
| 643 |
+
"reward_std": 0.0,
|
| 644 |
+
"rewards/accuracy_reward": 1.0,
|
| 645 |
+
"rewards/format_reward": 1.0,
|
| 646 |
+
"step": 49
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"completion_length": 488.125,
|
| 650 |
+
"epoch": 1.3157894736842106,
|
| 651 |
+
"grad_norm": 0.8667798461167672,
|
| 652 |
+
"kl": 0.00182342529296875,
|
| 653 |
+
"learning_rate": 8.684210526315789e-07,
|
| 654 |
+
"loss": 0.0001,
|
| 655 |
+
"reward": 1.9375,
|
| 656 |
+
"reward_std": 0.07216878235340118,
|
| 657 |
+
"rewards/accuracy_reward": 0.9375,
|
| 658 |
+
"rewards/format_reward": 1.0,
|
| 659 |
+
"step": 50
|
| 660 |
+
},
|
| 661 |
+
{
|
| 662 |
+
"completion_length": 498.96875,
|
| 663 |
+
"epoch": 1.3421052631578947,
|
| 664 |
+
"grad_norm": 1.24790653131382,
|
| 665 |
+
"kl": 0.0020599365234375,
|
| 666 |
+
"learning_rate": 8.657894736842105e-07,
|
| 667 |
+
"loss": 0.0001,
|
| 668 |
+
"reward": 1.90625,
|
| 669 |
+
"reward_std": 0.13466878235340118,
|
| 670 |
+
"rewards/accuracy_reward": 0.90625,
|
| 671 |
+
"rewards/format_reward": 1.0,
|
| 672 |
+
"step": 51
|
| 673 |
+
},
|
| 674 |
+
{
|
| 675 |
+
"completion_length": 519.3125,
|
| 676 |
+
"epoch": 1.368421052631579,
|
| 677 |
+
"grad_norm": 0.03953679886184328,
|
| 678 |
+
"kl": 0.001983642578125,
|
| 679 |
+
"learning_rate": 8.631578947368421e-07,
|
| 680 |
+
"loss": 0.0001,
|
| 681 |
+
"reward": 2.0,
|
| 682 |
+
"reward_std": 0.0,
|
| 683 |
+
"rewards/accuracy_reward": 1.0,
|
| 684 |
+
"rewards/format_reward": 1.0,
|
| 685 |
+
"step": 52
|
| 686 |
+
},
|
| 687 |
+
{
|
| 688 |
+
"completion_length": 517.03125,
|
| 689 |
+
"epoch": 1.3947368421052633,
|
| 690 |
+
"grad_norm": 0.7933468259292563,
|
| 691 |
+
"kl": 0.0022125244140625,
|
| 692 |
+
"learning_rate": 8.605263157894737e-07,
|
| 693 |
+
"loss": 0.0001,
|
| 694 |
+
"reward": 1.96875,
|
| 695 |
+
"reward_std": 0.0625,
|
| 696 |
+
"rewards/accuracy_reward": 0.96875,
|
| 697 |
+
"rewards/format_reward": 1.0,
|
| 698 |
+
"step": 53
|
| 699 |
+
},
|
| 700 |
+
{
|
| 701 |
+
"completion_length": 518.46875,
|
| 702 |
+
"epoch": 1.4210526315789473,
|
| 703 |
+
"grad_norm": 1.0167556818631809,
|
| 704 |
+
"kl": 0.0021514892578125,
|
| 705 |
+
"learning_rate": 8.578947368421053e-07,
|
| 706 |
+
"loss": 0.0001,
|
| 707 |
+
"reward": 1.96875,
|
| 708 |
+
"reward_std": 0.0625,
|
| 709 |
+
"rewards/accuracy_reward": 0.96875,
|
| 710 |
+
"rewards/format_reward": 1.0,
|
| 711 |
+
"step": 54
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"completion_length": 504.625,
|
| 715 |
+
"epoch": 1.4473684210526316,
|
| 716 |
+
"grad_norm": 0.030072954640137744,
|
| 717 |
+
"kl": 0.00201416015625,
|
| 718 |
+
"learning_rate": 8.552631578947367e-07,
|
| 719 |
+
"loss": 0.0001,
|
| 720 |
+
"reward": 2.0,
|
| 721 |
+
"reward_std": 0.0,
|
| 722 |
+
"rewards/accuracy_reward": 1.0,
|
| 723 |
+
"rewards/format_reward": 1.0,
|
| 724 |
+
"step": 55
|
| 725 |
+
},
|
| 726 |
+
{
|
| 727 |
+
"completion_length": 487.09375,
|
| 728 |
+
"epoch": 1.4736842105263157,
|
| 729 |
+
"grad_norm": 0.044081948740351436,
|
| 730 |
+
"kl": 0.00238037109375,
|
| 731 |
+
"learning_rate": 8.526315789473683e-07,
|
| 732 |
+
"loss": 0.0001,
|
| 733 |
+
"reward": 2.0,
|
| 734 |
+
"reward_std": 0.0,
|
| 735 |
+
"rewards/accuracy_reward": 1.0,
|
| 736 |
+
"rewards/format_reward": 1.0,
|
| 737 |
+
"step": 56
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"completion_length": 494.84375,
|
| 741 |
+
"epoch": 1.5,
|
| 742 |
+
"grad_norm": 0.6659130960255057,
|
| 743 |
+
"kl": 0.0023193359375,
|
| 744 |
+
"learning_rate": 8.499999999999999e-07,
|
| 745 |
+
"loss": 0.0001,
|
| 746 |
+
"reward": 1.96875,
|
| 747 |
+
"reward_std": 0.0625,
|
| 748 |
+
"rewards/accuracy_reward": 1.0,
|
| 749 |
+
"rewards/format_reward": 0.96875,
|
| 750 |
+
"step": 57
|
| 751 |
+
},
|
| 752 |
+
{
|
| 753 |
+
"completion_length": 502.96875,
|
| 754 |
+
"epoch": 1.526315789473684,
|
| 755 |
+
"grad_norm": 1.2870163334442986,
|
| 756 |
+
"kl": 0.0026397705078125,
|
| 757 |
+
"learning_rate": 8.473684210526315e-07,
|
| 758 |
+
"loss": 0.0001,
|
| 759 |
+
"reward": 1.9375,
|
| 760 |
+
"reward_std": 0.07216878235340118,
|
| 761 |
+
"rewards/accuracy_reward": 0.9375,
|
| 762 |
+
"rewards/format_reward": 1.0,
|
| 763 |
+
"step": 58
|
| 764 |
+
},
|
| 765 |
+
{
|
| 766 |
+
"completion_length": 509.15625,
|
| 767 |
+
"epoch": 1.5526315789473686,
|
| 768 |
+
"grad_norm": 0.768893645703431,
|
| 769 |
+
"kl": 0.002044677734375,
|
| 770 |
+
"learning_rate": 8.447368421052631e-07,
|
| 771 |
+
"loss": 0.0001,
|
| 772 |
+
"reward": 1.96875,
|
| 773 |
+
"reward_std": 0.0625,
|
| 774 |
+
"rewards/accuracy_reward": 0.96875,
|
| 775 |
+
"rewards/format_reward": 1.0,
|
| 776 |
+
"step": 59
|
| 777 |
+
},
|
| 778 |
+
{
|
| 779 |
+
"completion_length": 498.71875,
|
| 780 |
+
"epoch": 1.5789473684210527,
|
| 781 |
+
"grad_norm": 1.2239445462190495,
|
| 782 |
+
"kl": 0.002593994140625,
|
| 783 |
+
"learning_rate": 8.421052631578947e-07,
|
| 784 |
+
"loss": 0.0001,
|
| 785 |
+
"reward": 1.96875,
|
| 786 |
+
"reward_std": 0.0625,
|
| 787 |
+
"rewards/accuracy_reward": 1.0,
|
| 788 |
+
"rewards/format_reward": 0.96875,
|
| 789 |
+
"step": 60
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"completion_length": 519.40625,
|
| 793 |
+
"epoch": 1.6052631578947367,
|
| 794 |
+
"grad_norm": 2.677035126267462,
|
| 795 |
+
"kl": 0.0023193359375,
|
| 796 |
+
"learning_rate": 8.394736842105262e-07,
|
| 797 |
+
"loss": 0.0001,
|
| 798 |
+
"reward": 1.96875,
|
| 799 |
+
"reward_std": 0.0625,
|
| 800 |
+
"rewards/accuracy_reward": 1.0,
|
| 801 |
+
"rewards/format_reward": 0.96875,
|
| 802 |
+
"step": 61
|
| 803 |
+
},
|
| 804 |
+
{
|
| 805 |
+
"completion_length": 505.1875,
|
| 806 |
+
"epoch": 1.631578947368421,
|
| 807 |
+
"grad_norm": 1.8844544141537973,
|
| 808 |
+
"kl": 0.002593994140625,
|
| 809 |
+
"learning_rate": 8.368421052631579e-07,
|
| 810 |
+
"loss": 0.0001,
|
| 811 |
+
"reward": 1.90625,
|
| 812 |
+
"reward_std": 0.0625,
|
| 813 |
+
"rewards/accuracy_reward": 0.90625,
|
| 814 |
+
"rewards/format_reward": 1.0,
|
| 815 |
+
"step": 62
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"completion_length": 498.59375,
|
| 819 |
+
"epoch": 1.6578947368421053,
|
| 820 |
+
"grad_norm": 1.65261105976823,
|
| 821 |
+
"kl": 0.00244140625,
|
| 822 |
+
"learning_rate": 8.342105263157895e-07,
|
| 823 |
+
"loss": 0.0001,
|
| 824 |
+
"reward": 1.90625,
|
| 825 |
+
"reward_std": 0.13466878235340118,
|
| 826 |
+
"rewards/accuracy_reward": 0.90625,
|
| 827 |
+
"rewards/format_reward": 1.0,
|
| 828 |
+
"step": 63
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"completion_length": 517.0,
|
| 832 |
+
"epoch": 1.6842105263157894,
|
| 833 |
+
"grad_norm": 1.2268440042399227,
|
| 834 |
+
"kl": 0.002655029296875,
|
| 835 |
+
"learning_rate": 8.315789473684211e-07,
|
| 836 |
+
"loss": 0.0001,
|
| 837 |
+
"reward": 1.9375,
|
| 838 |
+
"reward_std": 0.125,
|
| 839 |
+
"rewards/accuracy_reward": 0.9375,
|
| 840 |
+
"rewards/format_reward": 1.0,
|
| 841 |
+
"step": 64
|
| 842 |
+
},
|
| 843 |
+
{
|
| 844 |
+
"completion_length": 489.53125,
|
| 845 |
+
"epoch": 1.7105263157894737,
|
| 846 |
+
"grad_norm": 1.1558248277077878,
|
| 847 |
+
"kl": 0.0027008056640625,
|
| 848 |
+
"learning_rate": 8.289473684210527e-07,
|
| 849 |
+
"loss": 0.0001,
|
| 850 |
+
"reward": 1.90625,
|
| 851 |
+
"reward_std": 0.0625,
|
| 852 |
+
"rewards/accuracy_reward": 0.90625,
|
| 853 |
+
"rewards/format_reward": 1.0,
|
| 854 |
+
"step": 65
|
| 855 |
+
},
|
| 856 |
+
{
|
| 857 |
+
"completion_length": 501.09375,
|
| 858 |
+
"epoch": 1.736842105263158,
|
| 859 |
+
"grad_norm": 0.02786918187085701,
|
| 860 |
+
"kl": 0.002227783203125,
|
| 861 |
+
"learning_rate": 8.263157894736841e-07,
|
| 862 |
+
"loss": 0.0001,
|
| 863 |
+
"reward": 1.875,
|
| 864 |
+
"reward_std": 0.0,
|
| 865 |
+
"rewards/accuracy_reward": 0.875,
|
| 866 |
+
"rewards/format_reward": 1.0,
|
| 867 |
+
"step": 66
|
| 868 |
+
},
|
| 869 |
+
{
|
| 870 |
+
"completion_length": 512.65625,
|
| 871 |
+
"epoch": 1.763157894736842,
|
| 872 |
+
"grad_norm": 1.4661151060918443,
|
| 873 |
+
"kl": 0.0027313232421875,
|
| 874 |
+
"learning_rate": 8.236842105263157e-07,
|
| 875 |
+
"loss": 0.0001,
|
| 876 |
+
"reward": 1.9375,
|
| 877 |
+
"reward_std": 0.125,
|
| 878 |
+
"rewards/accuracy_reward": 0.96875,
|
| 879 |
+
"rewards/format_reward": 0.96875,
|
| 880 |
+
"step": 67
|
| 881 |
+
},
|
| 882 |
+
{
|
| 883 |
+
"completion_length": 516.90625,
|
| 884 |
+
"epoch": 1.7894736842105263,
|
| 885 |
+
"grad_norm": 0.03947664659715401,
|
| 886 |
+
"kl": 0.0025482177734375,
|
| 887 |
+
"learning_rate": 8.210526315789473e-07,
|
| 888 |
+
"loss": 0.0001,
|
| 889 |
+
"reward": 1.875,
|
| 890 |
+
"reward_std": 0.0,
|
| 891 |
+
"rewards/accuracy_reward": 0.875,
|
| 892 |
+
"rewards/format_reward": 1.0,
|
| 893 |
+
"step": 68
|
| 894 |
+
},
|
| 895 |
+
{
|
| 896 |
+
"completion_length": 534.34375,
|
| 897 |
+
"epoch": 1.8157894736842106,
|
| 898 |
+
"grad_norm": 0.0321644121580206,
|
| 899 |
+
"kl": 0.002655029296875,
|
| 900 |
+
"learning_rate": 8.184210526315789e-07,
|
| 901 |
+
"loss": 0.0001,
|
| 902 |
+
"reward": 2.0,
|
| 903 |
+
"reward_std": 0.0,
|
| 904 |
+
"rewards/accuracy_reward": 1.0,
|
| 905 |
+
"rewards/format_reward": 1.0,
|
| 906 |
+
"step": 69
|
| 907 |
+
},
|
| 908 |
+
{
|
| 909 |
+
"completion_length": 497.1875,
|
| 910 |
+
"epoch": 1.8421052631578947,
|
| 911 |
+
"grad_norm": 0.8511530790848818,
|
| 912 |
+
"kl": 0.002960205078125,
|
| 913 |
+
"learning_rate": 8.157894736842105e-07,
|
| 914 |
+
"loss": 0.0001,
|
| 915 |
+
"reward": 1.9375,
|
| 916 |
+
"reward_std": 0.07216878235340118,
|
| 917 |
+
"rewards/accuracy_reward": 0.9375,
|
| 918 |
+
"rewards/format_reward": 1.0,
|
| 919 |
+
"step": 70
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"completion_length": 504.625,
|
| 923 |
+
"epoch": 1.868421052631579,
|
| 924 |
+
"grad_norm": 0.045403243082258384,
|
| 925 |
+
"kl": 0.0028228759765625,
|
| 926 |
+
"learning_rate": 8.131578947368421e-07,
|
| 927 |
+
"loss": 0.0001,
|
| 928 |
+
"reward": 2.0,
|
| 929 |
+
"reward_std": 0.0,
|
| 930 |
+
"rewards/accuracy_reward": 1.0,
|
| 931 |
+
"rewards/format_reward": 1.0,
|
| 932 |
+
"step": 71
|
| 933 |
+
},
|
| 934 |
+
{
|
| 935 |
+
"completion_length": 500.15625,
|
| 936 |
+
"epoch": 1.8947368421052633,
|
| 937 |
+
"grad_norm": 1.7186629257319292,
|
| 938 |
+
"kl": 0.0026397705078125,
|
| 939 |
+
"learning_rate": 8.105263157894736e-07,
|
| 940 |
+
"loss": 0.0001,
|
| 941 |
+
"reward": 1.96875,
|
| 942 |
+
"reward_std": 0.0625,
|
| 943 |
+
"rewards/accuracy_reward": 1.0,
|
| 944 |
+
"rewards/format_reward": 0.96875,
|
| 945 |
+
"step": 72
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"completion_length": 502.96875,
|
| 949 |
+
"epoch": 1.9210526315789473,
|
| 950 |
+
"grad_norm": 0.04829244770549609,
|
| 951 |
+
"kl": 0.00244140625,
|
| 952 |
+
"learning_rate": 8.078947368421052e-07,
|
| 953 |
+
"loss": 0.0001,
|
| 954 |
+
"reward": 1.875,
|
| 955 |
+
"reward_std": 0.0,
|
| 956 |
+
"rewards/accuracy_reward": 0.875,
|
| 957 |
+
"rewards/format_reward": 1.0,
|
| 958 |
+
"step": 73
|
| 959 |
+
},
|
| 960 |
+
{
|
| 961 |
+
"completion_length": 503.3125,
|
| 962 |
+
"epoch": 1.9473684210526314,
|
| 963 |
+
"grad_norm": 0.8916174408258744,
|
| 964 |
+
"kl": 0.0023345947265625,
|
| 965 |
+
"learning_rate": 8.052631578947368e-07,
|
| 966 |
+
"loss": 0.0001,
|
| 967 |
+
"reward": 1.96875,
|
| 968 |
+
"reward_std": 0.0625,
|
| 969 |
+
"rewards/accuracy_reward": 0.96875,
|
| 970 |
+
"rewards/format_reward": 1.0,
|
| 971 |
+
"step": 74
|
| 972 |
+
},
|
| 973 |
+
{
|
| 974 |
+
"completion_length": 494.625,
|
| 975 |
+
"epoch": 1.973684210526316,
|
| 976 |
+
"grad_norm": 1.1293143521918012,
|
| 977 |
+
"kl": 0.002655029296875,
|
| 978 |
+
"learning_rate": 8.026315789473685e-07,
|
| 979 |
+
"loss": 0.0001,
|
| 980 |
+
"reward": 1.96875,
|
| 981 |
+
"reward_std": 0.0625,
|
| 982 |
+
"rewards/accuracy_reward": 0.96875,
|
| 983 |
+
"rewards/format_reward": 1.0,
|
| 984 |
+
"step": 75
|
| 985 |
+
},
|
| 986 |
+
{
|
| 987 |
+
"completion_length": 500.0,
|
| 988 |
+
"epoch": 2.0,
|
| 989 |
+
"grad_norm": 3.37331916516421,
|
| 990 |
+
"kl": 0.0027923583984375,
|
| 991 |
+
"learning_rate": 8e-07,
|
| 992 |
+
"loss": 0.0001,
|
| 993 |
+
"reward": 2.0,
|
| 994 |
+
"reward_std": 0.0,
|
| 995 |
+
"rewards/accuracy_reward": 1.0,
|
| 996 |
+
"rewards/format_reward": 1.0,
|
| 997 |
+
"step": 76
|
| 998 |
+
},
|
| 999 |
+
{
|
| 1000 |
+
"completion_length": 531.96875,
|
| 1001 |
+
"epoch": 2.026315789473684,
|
| 1002 |
+
"grad_norm": 0.030167855476728275,
|
| 1003 |
+
"kl": 0.0027618408203125,
|
| 1004 |
+
"learning_rate": 7.973684210526315e-07,
|
| 1005 |
+
"loss": 0.0001,
|
| 1006 |
+
"reward": 2.0,
|
| 1007 |
+
"reward_std": 0.0,
|
| 1008 |
+
"rewards/accuracy_reward": 1.0,
|
| 1009 |
+
"rewards/format_reward": 1.0,
|
| 1010 |
+
"step": 77
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"completion_length": 499.34375,
|
| 1014 |
+
"epoch": 2.0526315789473686,
|
| 1015 |
+
"grad_norm": 1.501743158573559,
|
| 1016 |
+
"kl": 0.00311279296875,
|
| 1017 |
+
"learning_rate": 7.947368421052631e-07,
|
| 1018 |
+
"loss": 0.0001,
|
| 1019 |
+
"reward": 1.8125,
|
| 1020 |
+
"reward_std": 0.125,
|
| 1021 |
+
"rewards/accuracy_reward": 0.84375,
|
| 1022 |
+
"rewards/format_reward": 0.96875,
|
| 1023 |
+
"step": 78
|
| 1024 |
+
},
|
| 1025 |
+
{
|
| 1026 |
+
"completion_length": 492.78125,
|
| 1027 |
+
"epoch": 2.0789473684210527,
|
| 1028 |
+
"grad_norm": 0.03689606923255948,
|
| 1029 |
+
"kl": 0.002838134765625,
|
| 1030 |
+
"learning_rate": 7.921052631578947e-07,
|
| 1031 |
+
"loss": 0.0001,
|
| 1032 |
+
"reward": 2.0,
|
| 1033 |
+
"reward_std": 0.0,
|
| 1034 |
+
"rewards/accuracy_reward": 1.0,
|
| 1035 |
+
"rewards/format_reward": 1.0,
|
| 1036 |
+
"step": 79
|
| 1037 |
+
},
|
| 1038 |
+
{
|
| 1039 |
+
"completion_length": 528.5,
|
| 1040 |
+
"epoch": 2.1052631578947367,
|
| 1041 |
+
"grad_norm": 1.3204028049443157,
|
| 1042 |
+
"kl": 0.0029144287109375,
|
| 1043 |
+
"learning_rate": 7.894736842105263e-07,
|
| 1044 |
+
"loss": 0.0001,
|
| 1045 |
+
"reward": 1.90625,
|
| 1046 |
+
"reward_std": 0.1875,
|
| 1047 |
+
"rewards/accuracy_reward": 0.9375,
|
| 1048 |
+
"rewards/format_reward": 0.96875,
|
| 1049 |
+
"step": 80
|
| 1050 |
+
},
|
| 1051 |
+
{
|
| 1052 |
+
"completion_length": 513.8125,
|
| 1053 |
+
"epoch": 2.1315789473684212,
|
| 1054 |
+
"grad_norm": 0.04731343670470243,
|
| 1055 |
+
"kl": 0.00262451171875,
|
| 1056 |
+
"learning_rate": 7.868421052631579e-07,
|
| 1057 |
+
"loss": 0.0001,
|
| 1058 |
+
"reward": 2.0,
|
| 1059 |
+
"reward_std": 0.0,
|
| 1060 |
+
"rewards/accuracy_reward": 1.0,
|
| 1061 |
+
"rewards/format_reward": 1.0,
|
| 1062 |
+
"step": 81
|
| 1063 |
+
},
|
| 1064 |
+
{
|
| 1065 |
+
"completion_length": 500.4375,
|
| 1066 |
+
"epoch": 2.1578947368421053,
|
| 1067 |
+
"grad_norm": 0.7278429400242111,
|
| 1068 |
+
"kl": 0.00262451171875,
|
| 1069 |
+
"learning_rate": 7.842105263157895e-07,
|
| 1070 |
+
"loss": 0.0001,
|
| 1071 |
+
"reward": 1.90625,
|
| 1072 |
+
"reward_std": 0.0625,
|
| 1073 |
+
"rewards/accuracy_reward": 0.90625,
|
| 1074 |
+
"rewards/format_reward": 1.0,
|
| 1075 |
+
"step": 82
|
| 1076 |
+
},
|
| 1077 |
+
{
|
| 1078 |
+
"completion_length": 520.71875,
|
| 1079 |
+
"epoch": 2.1842105263157894,
|
| 1080 |
+
"grad_norm": 0.9942768526326492,
|
| 1081 |
+
"kl": 0.00274658203125,
|
| 1082 |
+
"learning_rate": 7.81578947368421e-07,
|
| 1083 |
+
"loss": 0.0001,
|
| 1084 |
+
"reward": 1.96875,
|
| 1085 |
+
"reward_std": 0.0625,
|
| 1086 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1087 |
+
"rewards/format_reward": 1.0,
|
| 1088 |
+
"step": 83
|
| 1089 |
+
},
|
| 1090 |
+
{
|
| 1091 |
+
"completion_length": 529.3125,
|
| 1092 |
+
"epoch": 2.2105263157894735,
|
| 1093 |
+
"grad_norm": 0.028533047509329622,
|
| 1094 |
+
"kl": 0.00244140625,
|
| 1095 |
+
"learning_rate": 7.789473684210526e-07,
|
| 1096 |
+
"loss": 0.0001,
|
| 1097 |
+
"reward": 2.0,
|
| 1098 |
+
"reward_std": 0.0,
|
| 1099 |
+
"rewards/accuracy_reward": 1.0,
|
| 1100 |
+
"rewards/format_reward": 1.0,
|
| 1101 |
+
"step": 84
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"completion_length": 520.78125,
|
| 1105 |
+
"epoch": 2.236842105263158,
|
| 1106 |
+
"grad_norm": 1.454115482202384,
|
| 1107 |
+
"kl": 0.002838134765625,
|
| 1108 |
+
"learning_rate": 7.763157894736841e-07,
|
| 1109 |
+
"loss": 0.0001,
|
| 1110 |
+
"reward": 1.875,
|
| 1111 |
+
"reward_std": 0.14433756470680237,
|
| 1112 |
+
"rewards/accuracy_reward": 0.875,
|
| 1113 |
+
"rewards/format_reward": 1.0,
|
| 1114 |
+
"step": 85
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"completion_length": 493.6875,
|
| 1118 |
+
"epoch": 2.263157894736842,
|
| 1119 |
+
"grad_norm": 0.034131542034081065,
|
| 1120 |
+
"kl": 0.002899169921875,
|
| 1121 |
+
"learning_rate": 7.736842105263157e-07,
|
| 1122 |
+
"loss": 0.0001,
|
| 1123 |
+
"reward": 2.0,
|
| 1124 |
+
"reward_std": 0.0,
|
| 1125 |
+
"rewards/accuracy_reward": 1.0,
|
| 1126 |
+
"rewards/format_reward": 1.0,
|
| 1127 |
+
"step": 86
|
| 1128 |
+
},
|
| 1129 |
+
{
|
| 1130 |
+
"completion_length": 495.46875,
|
| 1131 |
+
"epoch": 2.2894736842105265,
|
| 1132 |
+
"grad_norm": 0.04357390543835616,
|
| 1133 |
+
"kl": 0.0027313232421875,
|
| 1134 |
+
"learning_rate": 7.710526315789473e-07,
|
| 1135 |
+
"loss": 0.0001,
|
| 1136 |
+
"reward": 2.0,
|
| 1137 |
+
"reward_std": 0.0,
|
| 1138 |
+
"rewards/accuracy_reward": 1.0,
|
| 1139 |
+
"rewards/format_reward": 1.0,
|
| 1140 |
+
"step": 87
|
| 1141 |
+
},
|
| 1142 |
+
{
|
| 1143 |
+
"completion_length": 508.875,
|
| 1144 |
+
"epoch": 2.3157894736842106,
|
| 1145 |
+
"grad_norm": 1.0055553420607368,
|
| 1146 |
+
"kl": 0.0022735595703125,
|
| 1147 |
+
"learning_rate": 7.684210526315788e-07,
|
| 1148 |
+
"loss": 0.0001,
|
| 1149 |
+
"reward": 1.96875,
|
| 1150 |
+
"reward_std": 0.0625,
|
| 1151 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1152 |
+
"rewards/format_reward": 1.0,
|
| 1153 |
+
"step": 88
|
| 1154 |
+
},
|
| 1155 |
+
{
|
| 1156 |
+
"completion_length": 497.6875,
|
| 1157 |
+
"epoch": 2.3421052631578947,
|
| 1158 |
+
"grad_norm": 1.6914903798873342,
|
| 1159 |
+
"kl": 0.0027313232421875,
|
| 1160 |
+
"learning_rate": 7.657894736842105e-07,
|
| 1161 |
+
"loss": 0.0001,
|
| 1162 |
+
"reward": 1.96875,
|
| 1163 |
+
"reward_std": 0.0625,
|
| 1164 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1165 |
+
"rewards/format_reward": 1.0,
|
| 1166 |
+
"step": 89
|
| 1167 |
+
},
|
| 1168 |
+
{
|
| 1169 |
+
"completion_length": 512.25,
|
| 1170 |
+
"epoch": 2.3684210526315788,
|
| 1171 |
+
"grad_norm": 0.02834284445323136,
|
| 1172 |
+
"kl": 0.002655029296875,
|
| 1173 |
+
"learning_rate": 7.631578947368421e-07,
|
| 1174 |
+
"loss": 0.0001,
|
| 1175 |
+
"reward": 2.0,
|
| 1176 |
+
"reward_std": 0.0,
|
| 1177 |
+
"rewards/accuracy_reward": 1.0,
|
| 1178 |
+
"rewards/format_reward": 1.0,
|
| 1179 |
+
"step": 90
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"completion_length": 522.875,
|
| 1183 |
+
"epoch": 2.3947368421052633,
|
| 1184 |
+
"grad_norm": 0.873621683810661,
|
| 1185 |
+
"kl": 0.0032806396484375,
|
| 1186 |
+
"learning_rate": 7.605263157894737e-07,
|
| 1187 |
+
"loss": 0.0001,
|
| 1188 |
+
"reward": 1.96875,
|
| 1189 |
+
"reward_std": 0.0625,
|
| 1190 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1191 |
+
"rewards/format_reward": 1.0,
|
| 1192 |
+
"step": 91
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"completion_length": 502.59375,
|
| 1196 |
+
"epoch": 2.4210526315789473,
|
| 1197 |
+
"grad_norm": 0.038730383952057044,
|
| 1198 |
+
"kl": 0.0035247802734375,
|
| 1199 |
+
"learning_rate": 7.578947368421053e-07,
|
| 1200 |
+
"loss": 0.0001,
|
| 1201 |
+
"reward": 2.0,
|
| 1202 |
+
"reward_std": 0.0,
|
| 1203 |
+
"rewards/accuracy_reward": 1.0,
|
| 1204 |
+
"rewards/format_reward": 1.0,
|
| 1205 |
+
"step": 92
|
| 1206 |
+
},
|
| 1207 |
+
{
|
| 1208 |
+
"completion_length": 522.78125,
|
| 1209 |
+
"epoch": 2.4473684210526314,
|
| 1210 |
+
"grad_norm": 1.405567089260259,
|
| 1211 |
+
"kl": 0.0030670166015625,
|
| 1212 |
+
"learning_rate": 7.552631578947369e-07,
|
| 1213 |
+
"loss": 0.0001,
|
| 1214 |
+
"reward": 1.96875,
|
| 1215 |
+
"reward_std": 0.0625,
|
| 1216 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1217 |
+
"rewards/format_reward": 1.0,
|
| 1218 |
+
"step": 93
|
| 1219 |
+
},
|
| 1220 |
+
{
|
| 1221 |
+
"completion_length": 505.46875,
|
| 1222 |
+
"epoch": 2.473684210526316,
|
| 1223 |
+
"grad_norm": 0.030020529643763186,
|
| 1224 |
+
"kl": 0.0025634765625,
|
| 1225 |
+
"learning_rate": 7.526315789473684e-07,
|
| 1226 |
+
"loss": 0.0001,
|
| 1227 |
+
"reward": 2.0,
|
| 1228 |
+
"reward_std": 0.0,
|
| 1229 |
+
"rewards/accuracy_reward": 1.0,
|
| 1230 |
+
"rewards/format_reward": 1.0,
|
| 1231 |
+
"step": 94
|
| 1232 |
+
},
|
| 1233 |
+
{
|
| 1234 |
+
"completion_length": 510.5625,
|
| 1235 |
+
"epoch": 2.5,
|
| 1236 |
+
"grad_norm": 1.1924545507060844,
|
| 1237 |
+
"kl": 0.003173828125,
|
| 1238 |
+
"learning_rate": 7.5e-07,
|
| 1239 |
+
"loss": 0.0001,
|
| 1240 |
+
"reward": 1.96875,
|
| 1241 |
+
"reward_std": 0.0625,
|
| 1242 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1243 |
+
"rewards/format_reward": 1.0,
|
| 1244 |
+
"step": 95
|
| 1245 |
+
},
|
| 1246 |
+
{
|
| 1247 |
+
"completion_length": 522.15625,
|
| 1248 |
+
"epoch": 2.526315789473684,
|
| 1249 |
+
"grad_norm": 0.043988683847166775,
|
| 1250 |
+
"kl": 0.003204345703125,
|
| 1251 |
+
"learning_rate": 7.473684210526315e-07,
|
| 1252 |
+
"loss": 0.0001,
|
| 1253 |
+
"reward": 2.0,
|
| 1254 |
+
"reward_std": 0.0,
|
| 1255 |
+
"rewards/accuracy_reward": 1.0,
|
| 1256 |
+
"rewards/format_reward": 1.0,
|
| 1257 |
+
"step": 96
|
| 1258 |
+
},
|
| 1259 |
+
{
|
| 1260 |
+
"completion_length": 506.21875,
|
| 1261 |
+
"epoch": 2.5526315789473686,
|
| 1262 |
+
"grad_norm": 1.2599814660966382,
|
| 1263 |
+
"kl": 0.00372314453125,
|
| 1264 |
+
"learning_rate": 7.447368421052631e-07,
|
| 1265 |
+
"loss": 0.0001,
|
| 1266 |
+
"reward": 1.90625,
|
| 1267 |
+
"reward_std": 0.13466878235340118,
|
| 1268 |
+
"rewards/accuracy_reward": 0.9375,
|
| 1269 |
+
"rewards/format_reward": 0.96875,
|
| 1270 |
+
"step": 97
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"completion_length": 511.0625,
|
| 1274 |
+
"epoch": 2.5789473684210527,
|
| 1275 |
+
"grad_norm": 0.042162872448447394,
|
| 1276 |
+
"kl": 0.0033111572265625,
|
| 1277 |
+
"learning_rate": 7.421052631578947e-07,
|
| 1278 |
+
"loss": 0.0001,
|
| 1279 |
+
"reward": 2.0,
|
| 1280 |
+
"reward_std": 0.0,
|
| 1281 |
+
"rewards/accuracy_reward": 1.0,
|
| 1282 |
+
"rewards/format_reward": 1.0,
|
| 1283 |
+
"step": 98
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"completion_length": 504.90625,
|
| 1287 |
+
"epoch": 2.6052631578947367,
|
| 1288 |
+
"grad_norm": 0.0341121471676267,
|
| 1289 |
+
"kl": 0.0031280517578125,
|
| 1290 |
+
"learning_rate": 7.394736842105262e-07,
|
| 1291 |
+
"loss": 0.0001,
|
| 1292 |
+
"reward": 1.875,
|
| 1293 |
+
"reward_std": 0.0,
|
| 1294 |
+
"rewards/accuracy_reward": 0.875,
|
| 1295 |
+
"rewards/format_reward": 1.0,
|
| 1296 |
+
"step": 99
|
| 1297 |
+
},
|
| 1298 |
+
{
|
| 1299 |
+
"completion_length": 501.53125,
|
| 1300 |
+
"epoch": 2.6315789473684212,
|
| 1301 |
+
"grad_norm": 2.566911802127545,
|
| 1302 |
+
"kl": 0.003265380859375,
|
| 1303 |
+
"learning_rate": 7.368421052631578e-07,
|
| 1304 |
+
"loss": 0.0001,
|
| 1305 |
+
"reward": 1.96875,
|
| 1306 |
+
"reward_std": 0.0625,
|
| 1307 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1308 |
+
"rewards/format_reward": 1.0,
|
| 1309 |
+
"step": 100
|
| 1310 |
+
},
|
| 1311 |
+
{
|
| 1312 |
+
"completion_length": 498.875,
|
| 1313 |
+
"epoch": 2.6578947368421053,
|
| 1314 |
+
"grad_norm": 0.03337527256197859,
|
| 1315 |
+
"kl": 0.003082275390625,
|
| 1316 |
+
"learning_rate": 7.342105263157894e-07,
|
| 1317 |
+
"loss": 0.0001,
|
| 1318 |
+
"reward": 2.0,
|
| 1319 |
+
"reward_std": 0.0,
|
| 1320 |
+
"rewards/accuracy_reward": 1.0,
|
| 1321 |
+
"rewards/format_reward": 1.0,
|
| 1322 |
+
"step": 101
|
| 1323 |
+
},
|
| 1324 |
+
{
|
| 1325 |
+
"completion_length": 497.65625,
|
| 1326 |
+
"epoch": 2.6842105263157894,
|
| 1327 |
+
"grad_norm": 0.04741778746371284,
|
| 1328 |
+
"kl": 0.003662109375,
|
| 1329 |
+
"learning_rate": 7.315789473684211e-07,
|
| 1330 |
+
"loss": 0.0001,
|
| 1331 |
+
"reward": 2.0,
|
| 1332 |
+
"reward_std": 0.0,
|
| 1333 |
+
"rewards/accuracy_reward": 1.0,
|
| 1334 |
+
"rewards/format_reward": 1.0,
|
| 1335 |
+
"step": 102
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"completion_length": 487.15625,
|
| 1339 |
+
"epoch": 2.7105263157894735,
|
| 1340 |
+
"grad_norm": 1.8393077262931932,
|
| 1341 |
+
"kl": 0.00372314453125,
|
| 1342 |
+
"learning_rate": 7.289473684210527e-07,
|
| 1343 |
+
"loss": 0.0001,
|
| 1344 |
+
"reward": 1.96875,
|
| 1345 |
+
"reward_std": 0.0625,
|
| 1346 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1347 |
+
"rewards/format_reward": 1.0,
|
| 1348 |
+
"step": 103
|
| 1349 |
+
},
|
| 1350 |
+
{
|
| 1351 |
+
"completion_length": 521.0625,
|
| 1352 |
+
"epoch": 2.736842105263158,
|
| 1353 |
+
"grad_norm": 0.03889186679405788,
|
| 1354 |
+
"kl": 0.0036468505859375,
|
| 1355 |
+
"learning_rate": 7.263157894736843e-07,
|
| 1356 |
+
"loss": 0.0001,
|
| 1357 |
+
"reward": 2.0,
|
| 1358 |
+
"reward_std": 0.0,
|
| 1359 |
+
"rewards/accuracy_reward": 1.0,
|
| 1360 |
+
"rewards/format_reward": 1.0,
|
| 1361 |
+
"step": 104
|
| 1362 |
+
},
|
| 1363 |
+
{
|
| 1364 |
+
"completion_length": 510.5625,
|
| 1365 |
+
"epoch": 2.763157894736842,
|
| 1366 |
+
"grad_norm": 1.447109219593432,
|
| 1367 |
+
"kl": 0.0037078857421875,
|
| 1368 |
+
"learning_rate": 7.236842105263158e-07,
|
| 1369 |
+
"loss": 0.0001,
|
| 1370 |
+
"reward": 1.8125,
|
| 1371 |
+
"reward_std": 0.125,
|
| 1372 |
+
"rewards/accuracy_reward": 0.84375,
|
| 1373 |
+
"rewards/format_reward": 0.96875,
|
| 1374 |
+
"step": 105
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"completion_length": 509.71875,
|
| 1378 |
+
"epoch": 2.7894736842105265,
|
| 1379 |
+
"grad_norm": 1.4858428116278655,
|
| 1380 |
+
"kl": 0.003326416015625,
|
| 1381 |
+
"learning_rate": 7.210526315789473e-07,
|
| 1382 |
+
"loss": 0.0001,
|
| 1383 |
+
"reward": 1.96875,
|
| 1384 |
+
"reward_std": 0.0625,
|
| 1385 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1386 |
+
"rewards/format_reward": 1.0,
|
| 1387 |
+
"step": 106
|
| 1388 |
+
},
|
| 1389 |
+
{
|
| 1390 |
+
"completion_length": 508.40625,
|
| 1391 |
+
"epoch": 2.8157894736842106,
|
| 1392 |
+
"grad_norm": 0.961549949503767,
|
| 1393 |
+
"kl": 0.00323486328125,
|
| 1394 |
+
"learning_rate": 7.184210526315789e-07,
|
| 1395 |
+
"loss": 0.0001,
|
| 1396 |
+
"reward": 1.96875,
|
| 1397 |
+
"reward_std": 0.0625,
|
| 1398 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1399 |
+
"rewards/format_reward": 1.0,
|
| 1400 |
+
"step": 107
|
| 1401 |
+
},
|
| 1402 |
+
{
|
| 1403 |
+
"completion_length": 510.0625,
|
| 1404 |
+
"epoch": 2.8421052631578947,
|
| 1405 |
+
"grad_norm": 1.202043926324514,
|
| 1406 |
+
"kl": 0.0030670166015625,
|
| 1407 |
+
"learning_rate": 7.157894736842105e-07,
|
| 1408 |
+
"loss": 0.0001,
|
| 1409 |
+
"reward": 1.96875,
|
| 1410 |
+
"reward_std": 0.0625,
|
| 1411 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1412 |
+
"rewards/format_reward": 1.0,
|
| 1413 |
+
"step": 108
|
| 1414 |
+
},
|
| 1415 |
+
{
|
| 1416 |
+
"completion_length": 501.46875,
|
| 1417 |
+
"epoch": 2.8684210526315788,
|
| 1418 |
+
"grad_norm": 0.8258294441704436,
|
| 1419 |
+
"kl": 0.0034637451171875,
|
| 1420 |
+
"learning_rate": 7.131578947368421e-07,
|
| 1421 |
+
"loss": 0.0001,
|
| 1422 |
+
"reward": 1.96875,
|
| 1423 |
+
"reward_std": 0.0625,
|
| 1424 |
+
"rewards/accuracy_reward": 1.0,
|
| 1425 |
+
"rewards/format_reward": 0.96875,
|
| 1426 |
+
"step": 109
|
| 1427 |
+
},
|
| 1428 |
+
{
|
| 1429 |
+
"completion_length": 536.15625,
|
| 1430 |
+
"epoch": 2.8947368421052633,
|
| 1431 |
+
"grad_norm": 0.7881046328867846,
|
| 1432 |
+
"kl": 0.003448486328125,
|
| 1433 |
+
"learning_rate": 7.105263157894736e-07,
|
| 1434 |
+
"loss": 0.0001,
|
| 1435 |
+
"reward": 1.96875,
|
| 1436 |
+
"reward_std": 0.0625,
|
| 1437 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1438 |
+
"rewards/format_reward": 1.0,
|
| 1439 |
+
"step": 110
|
| 1440 |
+
},
|
| 1441 |
+
{
|
| 1442 |
+
"completion_length": 506.75,
|
| 1443 |
+
"epoch": 2.9210526315789473,
|
| 1444 |
+
"grad_norm": 0.04116293609934439,
|
| 1445 |
+
"kl": 0.0035858154296875,
|
| 1446 |
+
"learning_rate": 7.078947368421052e-07,
|
| 1447 |
+
"loss": 0.0001,
|
| 1448 |
+
"reward": 2.0,
|
| 1449 |
+
"reward_std": 0.0,
|
| 1450 |
+
"rewards/accuracy_reward": 1.0,
|
| 1451 |
+
"rewards/format_reward": 1.0,
|
| 1452 |
+
"step": 111
|
| 1453 |
+
},
|
| 1454 |
+
{
|
| 1455 |
+
"completion_length": 521.1875,
|
| 1456 |
+
"epoch": 2.9473684210526314,
|
| 1457 |
+
"grad_norm": 1.0874707114277227,
|
| 1458 |
+
"kl": 0.0035552978515625,
|
| 1459 |
+
"learning_rate": 7.052631578947368e-07,
|
| 1460 |
+
"loss": 0.0001,
|
| 1461 |
+
"reward": 1.78125,
|
| 1462 |
+
"reward_std": 0.13466878235340118,
|
| 1463 |
+
"rewards/accuracy_reward": 0.78125,
|
| 1464 |
+
"rewards/format_reward": 1.0,
|
| 1465 |
+
"step": 112
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"completion_length": 511.28125,
|
| 1469 |
+
"epoch": 2.973684210526316,
|
| 1470 |
+
"grad_norm": 0.0625092599479988,
|
| 1471 |
+
"kl": 0.003448486328125,
|
| 1472 |
+
"learning_rate": 7.026315789473684e-07,
|
| 1473 |
+
"loss": 0.0001,
|
| 1474 |
+
"reward": 2.0,
|
| 1475 |
+
"reward_std": 0.0,
|
| 1476 |
+
"rewards/accuracy_reward": 1.0,
|
| 1477 |
+
"rewards/format_reward": 1.0,
|
| 1478 |
+
"step": 113
|
| 1479 |
+
},
|
| 1480 |
+
{
|
| 1481 |
+
"completion_length": 503.8000183105469,
|
| 1482 |
+
"epoch": 3.0,
|
| 1483 |
+
"grad_norm": 0.03814663470015353,
|
| 1484 |
+
"kl": 0.0034332275390625,
|
| 1485 |
+
"learning_rate": 7e-07,
|
| 1486 |
+
"loss": 0.0001,
|
| 1487 |
+
"reward": 2.0,
|
| 1488 |
+
"reward_std": 0.0,
|
| 1489 |
+
"rewards/accuracy_reward": 1.0,
|
| 1490 |
+
"rewards/format_reward": 1.0,
|
| 1491 |
+
"step": 114
|
| 1492 |
+
},
|
| 1493 |
+
{
|
| 1494 |
+
"completion_length": 507.78125,
|
| 1495 |
+
"epoch": 3.026315789473684,
|
| 1496 |
+
"grad_norm": 0.05686010982708928,
|
| 1497 |
+
"kl": 0.0034027099609375,
|
| 1498 |
+
"learning_rate": 6.973684210526314e-07,
|
| 1499 |
+
"loss": 0.0001,
|
| 1500 |
+
"reward": 2.0,
|
| 1501 |
+
"reward_std": 0.0,
|
| 1502 |
+
"rewards/accuracy_reward": 1.0,
|
| 1503 |
+
"rewards/format_reward": 1.0,
|
| 1504 |
+
"step": 115
|
| 1505 |
+
},
|
| 1506 |
+
{
|
| 1507 |
+
"completion_length": 536.5,
|
| 1508 |
+
"epoch": 3.0526315789473686,
|
| 1509 |
+
"grad_norm": 0.04279707484724643,
|
| 1510 |
+
"kl": 0.003021240234375,
|
| 1511 |
+
"learning_rate": 6.947368421052631e-07,
|
| 1512 |
+
"loss": 0.0001,
|
| 1513 |
+
"reward": 2.0,
|
| 1514 |
+
"reward_std": 0.0,
|
| 1515 |
+
"rewards/accuracy_reward": 1.0,
|
| 1516 |
+
"rewards/format_reward": 1.0,
|
| 1517 |
+
"step": 116
|
| 1518 |
+
},
|
| 1519 |
+
{
|
| 1520 |
+
"completion_length": 504.84375,
|
| 1521 |
+
"epoch": 3.0789473684210527,
|
| 1522 |
+
"grad_norm": 0.8334012538858381,
|
| 1523 |
+
"kl": 0.0032958984375,
|
| 1524 |
+
"learning_rate": 6.921052631578947e-07,
|
| 1525 |
+
"loss": 0.0001,
|
| 1526 |
+
"reward": 1.96875,
|
| 1527 |
+
"reward_std": 0.0625,
|
| 1528 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1529 |
+
"rewards/format_reward": 1.0,
|
| 1530 |
+
"step": 117
|
| 1531 |
+
},
|
| 1532 |
+
{
|
| 1533 |
+
"completion_length": 499.84375,
|
| 1534 |
+
"epoch": 3.1052631578947367,
|
| 1535 |
+
"grad_norm": 0.9953068967016894,
|
| 1536 |
+
"kl": 0.0040283203125,
|
| 1537 |
+
"learning_rate": 6.894736842105263e-07,
|
| 1538 |
+
"loss": 0.0002,
|
| 1539 |
+
"reward": 1.96875,
|
| 1540 |
+
"reward_std": 0.0625,
|
| 1541 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1542 |
+
"rewards/format_reward": 1.0,
|
| 1543 |
+
"step": 118
|
| 1544 |
+
},
|
| 1545 |
+
{
|
| 1546 |
+
"completion_length": 511.59375,
|
| 1547 |
+
"epoch": 3.1315789473684212,
|
| 1548 |
+
"grad_norm": 0.03618191894604707,
|
| 1549 |
+
"kl": 0.0034027099609375,
|
| 1550 |
+
"learning_rate": 6.868421052631579e-07,
|
| 1551 |
+
"loss": 0.0001,
|
| 1552 |
+
"reward": 2.0,
|
| 1553 |
+
"reward_std": 0.0,
|
| 1554 |
+
"rewards/accuracy_reward": 1.0,
|
| 1555 |
+
"rewards/format_reward": 1.0,
|
| 1556 |
+
"step": 119
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"completion_length": 521.28125,
|
| 1560 |
+
"epoch": 3.1578947368421053,
|
| 1561 |
+
"grad_norm": 1.3499675363862598,
|
| 1562 |
+
"kl": 0.00384521484375,
|
| 1563 |
+
"learning_rate": 6.842105263157895e-07,
|
| 1564 |
+
"loss": 0.0002,
|
| 1565 |
+
"reward": 1.9375,
|
| 1566 |
+
"reward_std": 0.125,
|
| 1567 |
+
"rewards/accuracy_reward": 0.9375,
|
| 1568 |
+
"rewards/format_reward": 1.0,
|
| 1569 |
+
"step": 120
|
| 1570 |
+
},
|
| 1571 |
+
{
|
| 1572 |
+
"completion_length": 508.84375,
|
| 1573 |
+
"epoch": 3.1842105263157894,
|
| 1574 |
+
"grad_norm": 1.3905859323416692,
|
| 1575 |
+
"kl": 0.0034942626953125,
|
| 1576 |
+
"learning_rate": 6.81578947368421e-07,
|
| 1577 |
+
"loss": 0.0001,
|
| 1578 |
+
"reward": 1.96875,
|
| 1579 |
+
"reward_std": 0.0625,
|
| 1580 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1581 |
+
"rewards/format_reward": 1.0,
|
| 1582 |
+
"step": 121
|
| 1583 |
+
},
|
| 1584 |
+
{
|
| 1585 |
+
"completion_length": 517.40625,
|
| 1586 |
+
"epoch": 3.2105263157894735,
|
| 1587 |
+
"grad_norm": 1.3622360911755893,
|
| 1588 |
+
"kl": 0.0035552978515625,
|
| 1589 |
+
"learning_rate": 6.789473684210526e-07,
|
| 1590 |
+
"loss": 0.0001,
|
| 1591 |
+
"reward": 1.96875,
|
| 1592 |
+
"reward_std": 0.0625,
|
| 1593 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1594 |
+
"rewards/format_reward": 1.0,
|
| 1595 |
+
"step": 122
|
| 1596 |
+
},
|
| 1597 |
+
{
|
| 1598 |
+
"completion_length": 495.875,
|
| 1599 |
+
"epoch": 3.236842105263158,
|
| 1600 |
+
"grad_norm": 1.451454972303075,
|
| 1601 |
+
"kl": 0.003509521484375,
|
| 1602 |
+
"learning_rate": 6.763157894736842e-07,
|
| 1603 |
+
"loss": 0.0001,
|
| 1604 |
+
"reward": 1.875,
|
| 1605 |
+
"reward_std": 0.19716878235340118,
|
| 1606 |
+
"rewards/accuracy_reward": 0.90625,
|
| 1607 |
+
"rewards/format_reward": 0.96875,
|
| 1608 |
+
"step": 123
|
| 1609 |
+
},
|
| 1610 |
+
{
|
| 1611 |
+
"completion_length": 498.40625,
|
| 1612 |
+
"epoch": 3.263157894736842,
|
| 1613 |
+
"grad_norm": 0.06927241278752044,
|
| 1614 |
+
"kl": 0.0036773681640625,
|
| 1615 |
+
"learning_rate": 6.736842105263158e-07,
|
| 1616 |
+
"loss": 0.0001,
|
| 1617 |
+
"reward": 2.0,
|
| 1618 |
+
"reward_std": 0.0,
|
| 1619 |
+
"rewards/accuracy_reward": 1.0,
|
| 1620 |
+
"rewards/format_reward": 1.0,
|
| 1621 |
+
"step": 124
|
| 1622 |
+
},
|
| 1623 |
+
{
|
| 1624 |
+
"completion_length": 518.03125,
|
| 1625 |
+
"epoch": 3.2894736842105265,
|
| 1626 |
+
"grad_norm": 0.8762828465082988,
|
| 1627 |
+
"kl": 0.0033721923828125,
|
| 1628 |
+
"learning_rate": 6.710526315789473e-07,
|
| 1629 |
+
"loss": 0.0001,
|
| 1630 |
+
"reward": 1.875,
|
| 1631 |
+
"reward_std": 0.125,
|
| 1632 |
+
"rewards/accuracy_reward": 0.90625,
|
| 1633 |
+
"rewards/format_reward": 0.96875,
|
| 1634 |
+
"step": 125
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"completion_length": 525.96875,
|
| 1638 |
+
"epoch": 3.3157894736842106,
|
| 1639 |
+
"grad_norm": 0.1279472603343596,
|
| 1640 |
+
"kl": 0.0032196044921875,
|
| 1641 |
+
"learning_rate": 6.684210526315788e-07,
|
| 1642 |
+
"loss": 0.0001,
|
| 1643 |
+
"reward": 2.0,
|
| 1644 |
+
"reward_std": 0.0,
|
| 1645 |
+
"rewards/accuracy_reward": 1.0,
|
| 1646 |
+
"rewards/format_reward": 1.0,
|
| 1647 |
+
"step": 126
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"completion_length": 488.0625,
|
| 1651 |
+
"epoch": 3.3421052631578947,
|
| 1652 |
+
"grad_norm": 0.31566337930874167,
|
| 1653 |
+
"kl": 0.0032196044921875,
|
| 1654 |
+
"learning_rate": 6.657894736842104e-07,
|
| 1655 |
+
"loss": 0.0001,
|
| 1656 |
+
"reward": 2.0,
|
| 1657 |
+
"reward_std": 0.0,
|
| 1658 |
+
"rewards/accuracy_reward": 1.0,
|
| 1659 |
+
"rewards/format_reward": 1.0,
|
| 1660 |
+
"step": 127
|
| 1661 |
+
},
|
| 1662 |
+
{
|
| 1663 |
+
"completion_length": 513.09375,
|
| 1664 |
+
"epoch": 3.3684210526315788,
|
| 1665 |
+
"grad_norm": 2.827017411958231,
|
| 1666 |
+
"kl": 0.00457763671875,
|
| 1667 |
+
"learning_rate": 6.63157894736842e-07,
|
| 1668 |
+
"loss": 0.0002,
|
| 1669 |
+
"reward": 1.8125,
|
| 1670 |
+
"reward_std": 0.25,
|
| 1671 |
+
"rewards/accuracy_reward": 0.8125,
|
| 1672 |
+
"rewards/format_reward": 1.0,
|
| 1673 |
+
"step": 128
|
| 1674 |
+
},
|
| 1675 |
+
{
|
| 1676 |
+
"completion_length": 494.71875,
|
| 1677 |
+
"epoch": 3.3947368421052633,
|
| 1678 |
+
"grad_norm": 1.1860759612828082,
|
| 1679 |
+
"kl": 0.003631591796875,
|
| 1680 |
+
"learning_rate": 6.605263157894737e-07,
|
| 1681 |
+
"loss": 0.0001,
|
| 1682 |
+
"reward": 1.96875,
|
| 1683 |
+
"reward_std": 0.0625,
|
| 1684 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1685 |
+
"rewards/format_reward": 1.0,
|
| 1686 |
+
"step": 129
|
| 1687 |
+
},
|
| 1688 |
+
{
|
| 1689 |
+
"completion_length": 512.53125,
|
| 1690 |
+
"epoch": 3.4210526315789473,
|
| 1691 |
+
"grad_norm": 0.03855778832036919,
|
| 1692 |
+
"kl": 0.0036468505859375,
|
| 1693 |
+
"learning_rate": 6.578947368421053e-07,
|
| 1694 |
+
"loss": 0.0001,
|
| 1695 |
+
"reward": 2.0,
|
| 1696 |
+
"reward_std": 0.0,
|
| 1697 |
+
"rewards/accuracy_reward": 1.0,
|
| 1698 |
+
"rewards/format_reward": 1.0,
|
| 1699 |
+
"step": 130
|
| 1700 |
+
},
|
| 1701 |
+
{
|
| 1702 |
+
"completion_length": 519.5625,
|
| 1703 |
+
"epoch": 3.4473684210526314,
|
| 1704 |
+
"grad_norm": 0.04402464100179393,
|
| 1705 |
+
"kl": 0.00347900390625,
|
| 1706 |
+
"learning_rate": 6.552631578947369e-07,
|
| 1707 |
+
"loss": 0.0001,
|
| 1708 |
+
"reward": 2.0,
|
| 1709 |
+
"reward_std": 0.0,
|
| 1710 |
+
"rewards/accuracy_reward": 1.0,
|
| 1711 |
+
"rewards/format_reward": 1.0,
|
| 1712 |
+
"step": 131
|
| 1713 |
+
},
|
| 1714 |
+
{
|
| 1715 |
+
"completion_length": 486.21875,
|
| 1716 |
+
"epoch": 3.473684210526316,
|
| 1717 |
+
"grad_norm": 0.03890279645364714,
|
| 1718 |
+
"kl": 0.003509521484375,
|
| 1719 |
+
"learning_rate": 6.526315789473684e-07,
|
| 1720 |
+
"loss": 0.0001,
|
| 1721 |
+
"reward": 2.0,
|
| 1722 |
+
"reward_std": 0.0,
|
| 1723 |
+
"rewards/accuracy_reward": 1.0,
|
| 1724 |
+
"rewards/format_reward": 1.0,
|
| 1725 |
+
"step": 132
|
| 1726 |
+
},
|
| 1727 |
+
{
|
| 1728 |
+
"completion_length": 497.28125,
|
| 1729 |
+
"epoch": 3.5,
|
| 1730 |
+
"grad_norm": 0.9474366715612303,
|
| 1731 |
+
"kl": 0.004364013671875,
|
| 1732 |
+
"learning_rate": 6.5e-07,
|
| 1733 |
+
"loss": 0.0002,
|
| 1734 |
+
"reward": 1.90625,
|
| 1735 |
+
"reward_std": 0.0625,
|
| 1736 |
+
"rewards/accuracy_reward": 0.90625,
|
| 1737 |
+
"rewards/format_reward": 1.0,
|
| 1738 |
+
"step": 133
|
| 1739 |
+
},
|
| 1740 |
+
{
|
| 1741 |
+
"completion_length": 495.59375,
|
| 1742 |
+
"epoch": 3.526315789473684,
|
| 1743 |
+
"grad_norm": 1.3876819486259453,
|
| 1744 |
+
"kl": 0.0037689208984375,
|
| 1745 |
+
"learning_rate": 6.473684210526316e-07,
|
| 1746 |
+
"loss": 0.0002,
|
| 1747 |
+
"reward": 1.96875,
|
| 1748 |
+
"reward_std": 0.0625,
|
| 1749 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1750 |
+
"rewards/format_reward": 1.0,
|
| 1751 |
+
"step": 134
|
| 1752 |
+
},
|
| 1753 |
+
{
|
| 1754 |
+
"completion_length": 509.0,
|
| 1755 |
+
"epoch": 3.5526315789473686,
|
| 1756 |
+
"grad_norm": 0.04968025093227853,
|
| 1757 |
+
"kl": 0.0034027099609375,
|
| 1758 |
+
"learning_rate": 6.447368421052632e-07,
|
| 1759 |
+
"loss": 0.0001,
|
| 1760 |
+
"reward": 2.0,
|
| 1761 |
+
"reward_std": 0.0,
|
| 1762 |
+
"rewards/accuracy_reward": 1.0,
|
| 1763 |
+
"rewards/format_reward": 1.0,
|
| 1764 |
+
"step": 135
|
| 1765 |
+
},
|
| 1766 |
+
{
|
| 1767 |
+
"completion_length": 512.90625,
|
| 1768 |
+
"epoch": 3.5789473684210527,
|
| 1769 |
+
"grad_norm": 2.6370590276884385,
|
| 1770 |
+
"kl": 0.00433349609375,
|
| 1771 |
+
"learning_rate": 6.421052631578947e-07,
|
| 1772 |
+
"loss": 0.0002,
|
| 1773 |
+
"reward": 1.96875,
|
| 1774 |
+
"reward_std": 0.0625,
|
| 1775 |
+
"rewards/accuracy_reward": 1.0,
|
| 1776 |
+
"rewards/format_reward": 0.96875,
|
| 1777 |
+
"step": 136
|
| 1778 |
+
},
|
| 1779 |
+
{
|
| 1780 |
+
"completion_length": 515.46875,
|
| 1781 |
+
"epoch": 3.6052631578947367,
|
| 1782 |
+
"grad_norm": 0.9919508500122917,
|
| 1783 |
+
"kl": 0.00469970703125,
|
| 1784 |
+
"learning_rate": 6.394736842105262e-07,
|
| 1785 |
+
"loss": 0.0002,
|
| 1786 |
+
"reward": 1.9375,
|
| 1787 |
+
"reward_std": 0.125,
|
| 1788 |
+
"rewards/accuracy_reward": 0.9375,
|
| 1789 |
+
"rewards/format_reward": 1.0,
|
| 1790 |
+
"step": 137
|
| 1791 |
+
},
|
| 1792 |
+
{
|
| 1793 |
+
"completion_length": 486.75,
|
| 1794 |
+
"epoch": 3.6315789473684212,
|
| 1795 |
+
"grad_norm": 0.03323526791149113,
|
| 1796 |
+
"kl": 0.003204345703125,
|
| 1797 |
+
"learning_rate": 6.368421052631578e-07,
|
| 1798 |
+
"loss": 0.0001,
|
| 1799 |
+
"reward": 2.0,
|
| 1800 |
+
"reward_std": 0.0,
|
| 1801 |
+
"rewards/accuracy_reward": 1.0,
|
| 1802 |
+
"rewards/format_reward": 1.0,
|
| 1803 |
+
"step": 138
|
| 1804 |
+
},
|
| 1805 |
+
{
|
| 1806 |
+
"completion_length": 503.5625,
|
| 1807 |
+
"epoch": 3.6578947368421053,
|
| 1808 |
+
"grad_norm": 1.1252637437400366,
|
| 1809 |
+
"kl": 0.0037841796875,
|
| 1810 |
+
"learning_rate": 6.342105263157894e-07,
|
| 1811 |
+
"loss": 0.0002,
|
| 1812 |
+
"reward": 1.90625,
|
| 1813 |
+
"reward_std": 0.13466878235340118,
|
| 1814 |
+
"rewards/accuracy_reward": 0.90625,
|
| 1815 |
+
"rewards/format_reward": 1.0,
|
| 1816 |
+
"step": 139
|
| 1817 |
+
},
|
| 1818 |
+
{
|
| 1819 |
+
"completion_length": 517.40625,
|
| 1820 |
+
"epoch": 3.6842105263157894,
|
| 1821 |
+
"grad_norm": 0.8025074781730501,
|
| 1822 |
+
"kl": 0.004150390625,
|
| 1823 |
+
"learning_rate": 6.31578947368421e-07,
|
| 1824 |
+
"loss": 0.0002,
|
| 1825 |
+
"reward": 1.9375,
|
| 1826 |
+
"reward_std": 0.07216878235340118,
|
| 1827 |
+
"rewards/accuracy_reward": 0.9375,
|
| 1828 |
+
"rewards/format_reward": 1.0,
|
| 1829 |
+
"step": 140
|
| 1830 |
+
},
|
| 1831 |
+
{
|
| 1832 |
+
"completion_length": 510.21875,
|
| 1833 |
+
"epoch": 3.7105263157894735,
|
| 1834 |
+
"grad_norm": 0.032038711480624,
|
| 1835 |
+
"kl": 0.003448486328125,
|
| 1836 |
+
"learning_rate": 6.289473684210526e-07,
|
| 1837 |
+
"loss": 0.0001,
|
| 1838 |
+
"reward": 2.0,
|
| 1839 |
+
"reward_std": 0.0,
|
| 1840 |
+
"rewards/accuracy_reward": 1.0,
|
| 1841 |
+
"rewards/format_reward": 1.0,
|
| 1842 |
+
"step": 141
|
| 1843 |
+
},
|
| 1844 |
+
{
|
| 1845 |
+
"completion_length": 505.65625,
|
| 1846 |
+
"epoch": 3.736842105263158,
|
| 1847 |
+
"grad_norm": 0.030986940813949752,
|
| 1848 |
+
"kl": 0.0034637451171875,
|
| 1849 |
+
"learning_rate": 6.263157894736842e-07,
|
| 1850 |
+
"loss": 0.0001,
|
| 1851 |
+
"reward": 2.0,
|
| 1852 |
+
"reward_std": 0.0,
|
| 1853 |
+
"rewards/accuracy_reward": 1.0,
|
| 1854 |
+
"rewards/format_reward": 1.0,
|
| 1855 |
+
"step": 142
|
| 1856 |
+
},
|
| 1857 |
+
{
|
| 1858 |
+
"completion_length": 521.4375,
|
| 1859 |
+
"epoch": 3.763157894736842,
|
| 1860 |
+
"grad_norm": 0.03486593372780562,
|
| 1861 |
+
"kl": 0.00341796875,
|
| 1862 |
+
"learning_rate": 6.236842105263158e-07,
|
| 1863 |
+
"loss": 0.0001,
|
| 1864 |
+
"reward": 1.875,
|
| 1865 |
+
"reward_std": 0.0,
|
| 1866 |
+
"rewards/accuracy_reward": 0.875,
|
| 1867 |
+
"rewards/format_reward": 1.0,
|
| 1868 |
+
"step": 143
|
| 1869 |
+
},
|
| 1870 |
+
{
|
| 1871 |
+
"completion_length": 503.1875,
|
| 1872 |
+
"epoch": 3.7894736842105265,
|
| 1873 |
+
"grad_norm": 0.9150417772985632,
|
| 1874 |
+
"kl": 0.004150390625,
|
| 1875 |
+
"learning_rate": 6.210526315789474e-07,
|
| 1876 |
+
"loss": 0.0002,
|
| 1877 |
+
"reward": 1.96875,
|
| 1878 |
+
"reward_std": 0.0625,
|
| 1879 |
+
"rewards/accuracy_reward": 1.0,
|
| 1880 |
+
"rewards/format_reward": 0.96875,
|
| 1881 |
+
"step": 144
|
| 1882 |
+
},
|
| 1883 |
+
{
|
| 1884 |
+
"completion_length": 504.9375,
|
| 1885 |
+
"epoch": 3.8157894736842106,
|
| 1886 |
+
"grad_norm": 1.2738344698727906,
|
| 1887 |
+
"kl": 0.00396728515625,
|
| 1888 |
+
"learning_rate": 6.18421052631579e-07,
|
| 1889 |
+
"loss": 0.0002,
|
| 1890 |
+
"reward": 1.90625,
|
| 1891 |
+
"reward_std": 0.13466878235340118,
|
| 1892 |
+
"rewards/accuracy_reward": 0.90625,
|
| 1893 |
+
"rewards/format_reward": 1.0,
|
| 1894 |
+
"step": 145
|
| 1895 |
+
},
|
| 1896 |
+
{
|
| 1897 |
+
"completion_length": 503.25,
|
| 1898 |
+
"epoch": 3.8421052631578947,
|
| 1899 |
+
"grad_norm": 1.1946263189029565,
|
| 1900 |
+
"kl": 0.0034332275390625,
|
| 1901 |
+
"learning_rate": 6.157894736842105e-07,
|
| 1902 |
+
"loss": 0.0001,
|
| 1903 |
+
"reward": 1.875,
|
| 1904 |
+
"reward_std": 0.125,
|
| 1905 |
+
"rewards/accuracy_reward": 0.875,
|
| 1906 |
+
"rewards/format_reward": 1.0,
|
| 1907 |
+
"step": 146
|
| 1908 |
+
},
|
| 1909 |
+
{
|
| 1910 |
+
"completion_length": 534.65625,
|
| 1911 |
+
"epoch": 3.8684210526315788,
|
| 1912 |
+
"grad_norm": 1.0916070617134428,
|
| 1913 |
+
"kl": 0.003570556640625,
|
| 1914 |
+
"learning_rate": 6.131578947368421e-07,
|
| 1915 |
+
"loss": 0.0001,
|
| 1916 |
+
"reward": 1.96875,
|
| 1917 |
+
"reward_std": 0.0625,
|
| 1918 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1919 |
+
"rewards/format_reward": 1.0,
|
| 1920 |
+
"step": 147
|
| 1921 |
+
},
|
| 1922 |
+
{
|
| 1923 |
+
"completion_length": 496.53125,
|
| 1924 |
+
"epoch": 3.8947368421052633,
|
| 1925 |
+
"grad_norm": 0.04197200000816943,
|
| 1926 |
+
"kl": 0.00335693359375,
|
| 1927 |
+
"learning_rate": 6.105263157894736e-07,
|
| 1928 |
+
"loss": 0.0001,
|
| 1929 |
+
"reward": 2.0,
|
| 1930 |
+
"reward_std": 0.0,
|
| 1931 |
+
"rewards/accuracy_reward": 1.0,
|
| 1932 |
+
"rewards/format_reward": 1.0,
|
| 1933 |
+
"step": 148
|
| 1934 |
+
},
|
| 1935 |
+
{
|
| 1936 |
+
"completion_length": 505.0625,
|
| 1937 |
+
"epoch": 3.9210526315789473,
|
| 1938 |
+
"grad_norm": 0.9112054136826518,
|
| 1939 |
+
"kl": 0.0034942626953125,
|
| 1940 |
+
"learning_rate": 6.078947368421052e-07,
|
| 1941 |
+
"loss": 0.0001,
|
| 1942 |
+
"reward": 1.9375,
|
| 1943 |
+
"reward_std": 0.07216878235340118,
|
| 1944 |
+
"rewards/accuracy_reward": 0.9375,
|
| 1945 |
+
"rewards/format_reward": 1.0,
|
| 1946 |
+
"step": 149
|
| 1947 |
+
},
|
| 1948 |
+
{
|
| 1949 |
+
"completion_length": 491.9375,
|
| 1950 |
+
"epoch": 3.9473684210526314,
|
| 1951 |
+
"grad_norm": 0.896485459132187,
|
| 1952 |
+
"kl": 0.0036468505859375,
|
| 1953 |
+
"learning_rate": 6.052631578947368e-07,
|
| 1954 |
+
"loss": 0.0001,
|
| 1955 |
+
"reward": 1.96875,
|
| 1956 |
+
"reward_std": 0.0625,
|
| 1957 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1958 |
+
"rewards/format_reward": 1.0,
|
| 1959 |
+
"step": 150
|
| 1960 |
+
},
|
| 1961 |
+
{
|
| 1962 |
+
"completion_length": 497.46875,
|
| 1963 |
+
"epoch": 3.973684210526316,
|
| 1964 |
+
"grad_norm": 0.7253680478752668,
|
| 1965 |
+
"kl": 0.004150390625,
|
| 1966 |
+
"learning_rate": 6.026315789473684e-07,
|
| 1967 |
+
"loss": 0.0002,
|
| 1968 |
+
"reward": 1.96875,
|
| 1969 |
+
"reward_std": 0.0625,
|
| 1970 |
+
"rewards/accuracy_reward": 0.96875,
|
| 1971 |
+
"rewards/format_reward": 1.0,
|
| 1972 |
+
"step": 151
|
| 1973 |
+
},
|
| 1974 |
+
{
|
| 1975 |
+
"completion_length": 455.3999938964844,
|
| 1976 |
+
"epoch": 4.0,
|
| 1977 |
+
"grad_norm": 0.04315556382921662,
|
| 1978 |
+
"kl": 0.003662109375,
|
| 1979 |
+
"learning_rate": 6e-07,
|
| 1980 |
+
"loss": 0.0001,
|
| 1981 |
+
"reward": 2.0,
|
| 1982 |
+
"reward_std": 0.0,
|
| 1983 |
+
"rewards/accuracy_reward": 1.0,
|
| 1984 |
+
"rewards/format_reward": 1.0,
|
| 1985 |
+
"step": 152
|
| 1986 |
+
},
|
| 1987 |
+
{
|
| 1988 |
+
"completion_length": 503.625,
|
| 1989 |
+
"epoch": 4.026315789473684,
|
| 1990 |
+
"grad_norm": 0.03450640103445653,
|
| 1991 |
+
"kl": 0.0038299560546875,
|
| 1992 |
+
"learning_rate": 5.973684210526316e-07,
|
| 1993 |
+
"loss": 0.0002,
|
| 1994 |
+
"reward": 2.0,
|
| 1995 |
+
"reward_std": 0.0,
|
| 1996 |
+
"rewards/accuracy_reward": 1.0,
|
| 1997 |
+
"rewards/format_reward": 1.0,
|
| 1998 |
+
"step": 153
|
| 1999 |
+
},
|
| 2000 |
+
{
|
| 2001 |
+
"completion_length": 510.9375,
|
| 2002 |
+
"epoch": 4.052631578947368,
|
| 2003 |
+
"grad_norm": 0.8027374171690022,
|
| 2004 |
+
"kl": 0.003326416015625,
|
| 2005 |
+
"learning_rate": 5.947368421052631e-07,
|
| 2006 |
+
"loss": 0.0001,
|
| 2007 |
+
"reward": 1.96875,
|
| 2008 |
+
"reward_std": 0.0625,
|
| 2009 |
+
"rewards/accuracy_reward": 0.96875,
|
| 2010 |
+
"rewards/format_reward": 1.0,
|
| 2011 |
+
"step": 154
|
| 2012 |
+
},
|
| 2013 |
+
{
|
| 2014 |
+
"completion_length": 528.375,
|
| 2015 |
+
"epoch": 4.078947368421052,
|
| 2016 |
+
"grad_norm": 0.834678814594713,
|
| 2017 |
+
"kl": 0.0042724609375,
|
| 2018 |
+
"learning_rate": 5.921052631578946e-07,
|
| 2019 |
+
"loss": 0.0002,
|
| 2020 |
+
"reward": 1.9375,
|
| 2021 |
+
"reward_std": 0.125,
|
| 2022 |
+
"rewards/accuracy_reward": 0.96875,
|
| 2023 |
+
"rewards/format_reward": 0.96875,
|
| 2024 |
+
"step": 155
|
| 2025 |
+
},
|
| 2026 |
+
{
|
| 2027 |
+
"completion_length": 528.59375,
|
| 2028 |
+
"epoch": 4.105263157894737,
|
| 2029 |
+
"grad_norm": 1.5126161433832532,
|
| 2030 |
+
"kl": 0.0036468505859375,
|
| 2031 |
+
"learning_rate": 5.894736842105262e-07,
|
| 2032 |
+
"loss": 0.0001,
|
| 2033 |
+
"reward": 1.90625,
|
| 2034 |
+
"reward_std": 0.13466878235340118,
|
| 2035 |
+
"rewards/accuracy_reward": 0.90625,
|
| 2036 |
+
"rewards/format_reward": 1.0,
|
| 2037 |
+
"step": 156
|
| 2038 |
+
},
|
| 2039 |
+
{
|
| 2040 |
+
"completion_length": 499.21875,
|
| 2041 |
+
"epoch": 4.131578947368421,
|
| 2042 |
+
"grad_norm": 0.04002314203603394,
|
| 2043 |
+
"kl": 0.003570556640625,
|
| 2044 |
+
"learning_rate": 5.868421052631579e-07,
|
| 2045 |
+
"loss": 0.0001,
|
| 2046 |
+
"reward": 2.0,
|
| 2047 |
+
"reward_std": 0.0,
|
| 2048 |
+
"rewards/accuracy_reward": 1.0,
|
| 2049 |
+
"rewards/format_reward": 1.0,
|
| 2050 |
+
"step": 157
|
| 2051 |
+
},
|
| 2052 |
+
{
|
| 2053 |
+
"completion_length": 517.53125,
|
| 2054 |
+
"epoch": 4.157894736842105,
|
| 2055 |
+
"grad_norm": 0.8871107366636743,
|
| 2056 |
+
"kl": 0.004241943359375,
|
| 2057 |
+
"learning_rate": 5.842105263157895e-07,
|
| 2058 |
+
"loss": 0.0002,
|
| 2059 |
+
"reward": 1.96875,
|
| 2060 |
+
"reward_std": 0.0625,
|
| 2061 |
+
"rewards/accuracy_reward": 0.96875,
|
| 2062 |
+
"rewards/format_reward": 1.0,
|
| 2063 |
+
"step": 158
|
| 2064 |
+
},
|
| 2065 |
+
{
|
| 2066 |
+
"completion_length": 500.46875,
|
| 2067 |
+
"epoch": 4.184210526315789,
|
| 2068 |
+
"grad_norm": 0.034607701527423755,
|
| 2069 |
+
"kl": 0.0036773681640625,
|
| 2070 |
+
"learning_rate": 5.81578947368421e-07,
|
| 2071 |
+
"loss": 0.0001,
|
| 2072 |
+
"reward": 2.0,
|
| 2073 |
+
"reward_std": 0.0,
|
| 2074 |
+
"rewards/accuracy_reward": 1.0,
|
| 2075 |
+
"rewards/format_reward": 1.0,
|
| 2076 |
+
"step": 159
|
| 2077 |
+
},
|
| 2078 |
+
{
|
| 2079 |
+
"completion_length": 508.25,
|
| 2080 |
+
"epoch": 4.2105263157894735,
|
| 2081 |
+
"grad_norm": 0.8214538935630136,
|
| 2082 |
+
"kl": 0.00439453125,
|
| 2083 |
+
"learning_rate": 5.789473684210526e-07,
|
| 2084 |
+
"loss": 0.0002,
|
| 2085 |
+
"reward": 1.96875,
|
| 2086 |
+
"reward_std": 0.0625,
|
| 2087 |
+
"rewards/accuracy_reward": 0.96875,
|
| 2088 |
+
"rewards/format_reward": 1.0,
|
| 2089 |
+
"step": 160
|
| 2090 |
+
},
|
| 2091 |
+
{
|
| 2092 |
+
"completion_length": 510.375,
|
| 2093 |
+
"epoch": 4.2368421052631575,
|
| 2094 |
+
"grad_norm": 1.6395530042768915,
|
| 2095 |
+
"kl": 0.00408935546875,
|
| 2096 |
+
"learning_rate": 5.763157894736842e-07,
|
| 2097 |
+
"loss": 0.0002,
|
| 2098 |
+
"reward": 1.84375,
|
| 2099 |
+
"reward_std": 0.1875,
|
| 2100 |
+
"rewards/accuracy_reward": 0.84375,
|
| 2101 |
+
"rewards/format_reward": 1.0,
|
| 2102 |
+
"step": 161
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"completion_length": 514.75,
|
| 2106 |
+
"epoch": 4.2631578947368425,
|
| 2107 |
+
"grad_norm": 2.6138224629827476,
|
| 2108 |
+
"kl": 0.0037841796875,
|
| 2109 |
+
"learning_rate": 5.736842105263158e-07,
|
| 2110 |
+
"loss": 0.0002,
|
| 2111 |
+
"reward": 1.90625,
|
| 2112 |
+
"reward_std": 0.13466878235340118,
|
| 2113 |
+
"rewards/accuracy_reward": 0.90625,
|
| 2114 |
+
"rewards/format_reward": 1.0,
|
| 2115 |
+
"step": 162
|
| 2116 |
+
},
|
| 2117 |
+
{
|
| 2118 |
+
"completion_length": 499.09375,
|
| 2119 |
+
"epoch": 4.2894736842105265,
|
| 2120 |
+
"grad_norm": 0.04808481003397733,
|
| 2121 |
+
"kl": 0.003997802734375,
|
| 2122 |
+
"learning_rate": 5.710526315789474e-07,
|
| 2123 |
+
"loss": 0.0002,
|
| 2124 |
+
"reward": 2.0,
|
| 2125 |
+
"reward_std": 0.0,
|
| 2126 |
+
"rewards/accuracy_reward": 1.0,
|
| 2127 |
+
"rewards/format_reward": 1.0,
|
| 2128 |
+
"step": 163
|
| 2129 |
+
},
|
| 2130 |
+
{
|
| 2131 |
+
"completion_length": 506.03125,
|
| 2132 |
+
"epoch": 4.315789473684211,
|
| 2133 |
+
"grad_norm": 0.08804071935459232,
|
| 2134 |
+
"kl": 0.0038909912109375,
|
| 2135 |
+
"learning_rate": 5.68421052631579e-07,
|
| 2136 |
+
"loss": 0.0002,
|
| 2137 |
+
"reward": 2.0,
|
| 2138 |
+
"reward_std": 0.0,
|
| 2139 |
+
"rewards/accuracy_reward": 1.0,
|
| 2140 |
+
"rewards/format_reward": 1.0,
|
| 2141 |
+
"step": 164
|
| 2142 |
+
},
|
| 2143 |
+
{
|
| 2144 |
+
"completion_length": 476.03125,
|
| 2145 |
+
"epoch": 4.342105263157895,
|
| 2146 |
+
"grad_norm": 0.03572194363283224,
|
| 2147 |
+
"kl": 0.0036773681640625,
|
| 2148 |
+
"learning_rate": 5.657894736842104e-07,
|
| 2149 |
+
"loss": 0.0001,
|
| 2150 |
+
"reward": 2.0,
|
| 2151 |
+
"reward_std": 0.0,
|
| 2152 |
+
"rewards/accuracy_reward": 1.0,
|
| 2153 |
+
"rewards/format_reward": 1.0,
|
| 2154 |
+
"step": 165
|
| 2155 |
+
},
|
| 2156 |
+
{
|
| 2157 |
+
"completion_length": 536.6875,
|
| 2158 |
+
"epoch": 4.368421052631579,
|
| 2159 |
+
"grad_norm": 0.04019933989542527,
|
| 2160 |
+
"kl": 0.0038909912109375,
|
| 2161 |
+
"learning_rate": 5.63157894736842e-07,
|
| 2162 |
+
"loss": 0.0002,
|
| 2163 |
+
"reward": 2.0,
|
| 2164 |
+
"reward_std": 0.0,
|
| 2165 |
+
"rewards/accuracy_reward": 1.0,
|
| 2166 |
+
"rewards/format_reward": 1.0,
|
| 2167 |
+
"step": 166
|
| 2168 |
+
},
|
| 2169 |
+
{
|
| 2170 |
+
"completion_length": 509.25,
|
| 2171 |
+
"epoch": 4.394736842105263,
|
| 2172 |
+
"grad_norm": 1.5681592918937646,
|
| 2173 |
+
"kl": 0.005035400390625,
|
| 2174 |
+
"learning_rate": 5.605263157894736e-07,
|
| 2175 |
+
"loss": 0.0002,
|
| 2176 |
+
"reward": 1.84375,
|
| 2177 |
+
"reward_std": 0.1875,
|
| 2178 |
+
"rewards/accuracy_reward": 0.84375,
|
| 2179 |
+
"rewards/format_reward": 1.0,
|
| 2180 |
+
"step": 167
|
| 2181 |
+
},
|
| 2182 |
+
{
|
| 2183 |
+
"completion_length": 497.34375,
|
| 2184 |
+
"epoch": 4.421052631578947,
|
| 2185 |
+
"grad_norm": 2.538787505539558,
|
| 2186 |
+
"kl": 0.0042724609375,
|
| 2187 |
+
"learning_rate": 5.578947368421052e-07,
|
| 2188 |
+
"loss": 0.0002,
|
| 2189 |
+
"reward": 1.9375,
|
| 2190 |
+
"reward_std": 0.125,
|
| 2191 |
+
"rewards/accuracy_reward": 0.9375,
|
| 2192 |
+
"rewards/format_reward": 1.0,
|
| 2193 |
+
"step": 168
|
| 2194 |
+
},
|
| 2195 |
+
{
|
| 2196 |
+
"completion_length": 520.65625,
|
| 2197 |
+
"epoch": 4.447368421052632,
|
| 2198 |
+
"grad_norm": 0.041019565179391565,
|
| 2199 |
+
"kl": 0.0032196044921875,
|
| 2200 |
+
"learning_rate": 5.552631578947368e-07,
|
| 2201 |
+
"loss": 0.0001,
|
| 2202 |
+
"reward": 2.0,
|
| 2203 |
+
"reward_std": 0.0,
|
| 2204 |
+
"rewards/accuracy_reward": 1.0,
|
| 2205 |
+
"rewards/format_reward": 1.0,
|
| 2206 |
+
"step": 169
|
| 2207 |
+
},
|
| 2208 |
+
{
|
| 2209 |
+
"completion_length": 511.71875,
|
| 2210 |
+
"epoch": 4.473684210526316,
|
| 2211 |
+
"grad_norm": 1.0243322126591785,
|
| 2212 |
+
"kl": 0.00445556640625,
|
| 2213 |
+
"learning_rate": 5.526315789473684e-07,
|
| 2214 |
+
"loss": 0.0002,
|
| 2215 |
+
"reward": 1.96875,
|
| 2216 |
+
"reward_std": 0.0625,
|
| 2217 |
+
"rewards/accuracy_reward": 0.96875,
|
| 2218 |
+
"rewards/format_reward": 1.0,
|
| 2219 |
+
"step": 170
|
| 2220 |
+
},
|
| 2221 |
+
{
|
| 2222 |
+
"completion_length": 523.40625,
|
| 2223 |
+
"epoch": 4.5,
|
| 2224 |
+
"grad_norm": 0.6764116645829102,
|
| 2225 |
+
"kl": 0.00433349609375,
|
| 2226 |
+
"learning_rate": 5.5e-07,
|
| 2227 |
+
"loss": 0.0002,
|
| 2228 |
+
"reward": 1.96875,
|
| 2229 |
+
"reward_std": 0.0625,
|
| 2230 |
+
"rewards/accuracy_reward": 1.0,
|
| 2231 |
+
"rewards/format_reward": 0.96875,
|
| 2232 |
+
"step": 171
|
| 2233 |
+
},
|
| 2234 |
+
{
|
| 2235 |
+
"completion_length": 501.75,
|
| 2236 |
+
"epoch": 4.526315789473684,
|
| 2237 |
+
"grad_norm": 1.0831256376423706,
|
| 2238 |
+
"kl": 0.003814697265625,
|
| 2239 |
+
"learning_rate": 5.473684210526316e-07,
|
| 2240 |
+
"loss": 0.0002,
|
| 2241 |
+
"reward": 1.875,
|
| 2242 |
+
"reward_std": 0.125,
|
| 2243 |
+
"rewards/accuracy_reward": 0.875,
|
| 2244 |
+
"rewards/format_reward": 1.0,
|
| 2245 |
+
"step": 172
|
| 2246 |
+
},
|
| 2247 |
+
{
|
| 2248 |
+
"completion_length": 506.21875,
|
| 2249 |
+
"epoch": 4.552631578947368,
|
| 2250 |
+
"grad_norm": 0.046752954659444006,
|
| 2251 |
+
"kl": 0.00360107421875,
|
| 2252 |
+
"learning_rate": 5.447368421052632e-07,
|
| 2253 |
+
"loss": 0.0001,
|
| 2254 |
+
"reward": 2.0,
|
| 2255 |
+
"reward_std": 0.0,
|
| 2256 |
+
"rewards/accuracy_reward": 1.0,
|
| 2257 |
+
"rewards/format_reward": 1.0,
|
| 2258 |
+
"step": 173
|
| 2259 |
+
},
|
| 2260 |
+
{
|
| 2261 |
+
"completion_length": 497.03125,
|
| 2262 |
+
"epoch": 4.578947368421053,
|
| 2263 |
+
"grad_norm": 1.0272776092127476,
|
| 2264 |
+
"kl": 0.0034637451171875,
|
| 2265 |
+
"learning_rate": 5.421052631578948e-07,
|
| 2266 |
+
"loss": 0.0001,
|
| 2267 |
+
"reward": 1.90625,
|
| 2268 |
+
"reward_std": 0.0625,
|
| 2269 |
+
"rewards/accuracy_reward": 0.90625,
|
| 2270 |
+
"rewards/format_reward": 1.0,
|
| 2271 |
+
"step": 174
|
| 2272 |
+
},
|
| 2273 |
+
{
|
| 2274 |
+
"completion_length": 498.40625,
|
| 2275 |
+
"epoch": 4.605263157894737,
|
| 2276 |
+
"grad_norm": 1.0347251781483067,
|
| 2277 |
+
"kl": 0.003662109375,
|
| 2278 |
+
"learning_rate": 5.394736842105264e-07,
|
| 2279 |
+
"loss": 0.0001,
|
| 2280 |
+
"reward": 1.96875,
|
| 2281 |
+
"reward_std": 0.0625,
|
| 2282 |
+
"rewards/accuracy_reward": 0.96875,
|
| 2283 |
+
"rewards/format_reward": 1.0,
|
| 2284 |
+
"step": 175
|
| 2285 |
+
},
|
| 2286 |
+
{
|
| 2287 |
+
"completion_length": 492.0625,
|
| 2288 |
+
"epoch": 4.631578947368421,
|
| 2289 |
+
"grad_norm": 5.431342136617613,
|
| 2290 |
+
"kl": 0.004364013671875,
|
| 2291 |
+
"learning_rate": 5.368421052631578e-07,
|
| 2292 |
+
"loss": 0.0002,
|
| 2293 |
+
"reward": 1.9375,
|
| 2294 |
+
"reward_std": 0.07216878235340118,
|
| 2295 |
+
"rewards/accuracy_reward": 0.9375,
|
| 2296 |
+
"rewards/format_reward": 1.0,
|
| 2297 |
+
"step": 176
|
| 2298 |
+
},
|
| 2299 |
+
{
|
| 2300 |
+
"completion_length": 500.21875,
|
| 2301 |
+
"epoch": 4.657894736842105,
|
| 2302 |
+
"grad_norm": 0.061596768702879764,
|
| 2303 |
+
"kl": 0.003631591796875,
|
| 2304 |
+
"learning_rate": 5.342105263157894e-07,
|
| 2305 |
+
"loss": 0.0001,
|
| 2306 |
+
"reward": 2.0,
|
| 2307 |
+
"reward_std": 0.0,
|
| 2308 |
+
"rewards/accuracy_reward": 1.0,
|
| 2309 |
+
"rewards/format_reward": 1.0,
|
| 2310 |
+
"step": 177
|
| 2311 |
+
},
|
| 2312 |
+
{
|
| 2313 |
+
"completion_length": 488.40625,
|
| 2314 |
+
"epoch": 4.684210526315789,
|
| 2315 |
+
"grad_norm": 0.03793363317517718,
|
| 2316 |
+
"kl": 0.004058837890625,
|
| 2317 |
+
"learning_rate": 5.31578947368421e-07,
|
| 2318 |
+
"loss": 0.0002,
|
| 2319 |
+
"reward": 2.0,
|
| 2320 |
+
"reward_std": 0.0,
|
| 2321 |
+
"rewards/accuracy_reward": 1.0,
|
| 2322 |
+
"rewards/format_reward": 1.0,
|
| 2323 |
+
"step": 178
|
| 2324 |
+
},
|
| 2325 |
+
{
|
| 2326 |
+
"completion_length": 488.125,
|
| 2327 |
+
"epoch": 4.7105263157894735,
|
| 2328 |
+
"grad_norm": 1.459873859774728,
|
| 2329 |
+
"kl": 0.00433349609375,
|
| 2330 |
+
"learning_rate": 5.289473684210526e-07,
|
| 2331 |
+
"loss": 0.0002,
|
| 2332 |
+
"reward": 1.90625,
|
| 2333 |
+
"reward_std": 0.1875,
|
| 2334 |
+
"rewards/accuracy_reward": 0.90625,
|
| 2335 |
+
"rewards/format_reward": 1.0,
|
| 2336 |
+
"step": 179
|
| 2337 |
+
},
|
| 2338 |
+
{
|
| 2339 |
+
"completion_length": 522.0,
|
| 2340 |
+
"epoch": 4.7368421052631575,
|
| 2341 |
+
"grad_norm": 0.8661182876644632,
|
| 2342 |
+
"kl": 0.004638671875,
|
| 2343 |
+
"learning_rate": 5.263157894736842e-07,
|
| 2344 |
+
"loss": 0.0002,
|
| 2345 |
+
"reward": 1.9375,
|
| 2346 |
+
"reward_std": 0.125,
|
| 2347 |
+
"rewards/accuracy_reward": 0.96875,
|
| 2348 |
+
"rewards/format_reward": 0.96875,
|
| 2349 |
+
"step": 180
|
| 2350 |
+
},
|
| 2351 |
+
{
|
| 2352 |
+
"completion_length": 502.6875,
|
| 2353 |
+
"epoch": 4.7631578947368425,
|
| 2354 |
+
"grad_norm": 0.07996281170258902,
|
| 2355 |
+
"kl": 0.004486083984375,
|
| 2356 |
+
"learning_rate": 5.236842105263157e-07,
|
| 2357 |
+
"loss": 0.0002,
|
| 2358 |
+
"reward": 2.0,
|
| 2359 |
+
"reward_std": 0.0,
|
| 2360 |
+
"rewards/accuracy_reward": 1.0,
|
| 2361 |
+
"rewards/format_reward": 1.0,
|
| 2362 |
+
"step": 181
|
| 2363 |
+
},
|
| 2364 |
+
{
|
| 2365 |
+
"completion_length": 495.8125,
|
| 2366 |
+
"epoch": 4.7894736842105265,
|
| 2367 |
+
"grad_norm": 0.9651399175233428,
|
| 2368 |
+
"kl": 0.00360107421875,
|
| 2369 |
+
"learning_rate": 5.210526315789473e-07,
|
| 2370 |
+
"loss": 0.0001,
|
| 2371 |
+
"reward": 1.96875,
|
| 2372 |
+
"reward_std": 0.0625,
|
| 2373 |
+
"rewards/accuracy_reward": 1.0,
|
| 2374 |
+
"rewards/format_reward": 0.96875,
|
| 2375 |
+
"step": 182
|
| 2376 |
+
},
|
| 2377 |
+
{
|
| 2378 |
+
"completion_length": 490.78125,
|
| 2379 |
+
"epoch": 4.815789473684211,
|
| 2380 |
+
"grad_norm": 0.957605365453321,
|
| 2381 |
+
"kl": 0.00421142578125,
|
| 2382 |
+
"learning_rate": 5.184210526315789e-07,
|
| 2383 |
+
"loss": 0.0002,
|
| 2384 |
+
"reward": 1.90625,
|
| 2385 |
+
"reward_std": 0.0625,
|
| 2386 |
+
"rewards/accuracy_reward": 0.90625,
|
| 2387 |
+
"rewards/format_reward": 1.0,
|
| 2388 |
+
"step": 183
|
| 2389 |
+
},
|
| 2390 |
+
{
|
| 2391 |
+
"completion_length": 489.53125,
|
| 2392 |
+
"epoch": 4.842105263157895,
|
| 2393 |
+
"grad_norm": 0.04438711227285697,
|
| 2394 |
+
"kl": 0.004974365234375,
|
| 2395 |
+
"learning_rate": 5.157894736842106e-07,
|
| 2396 |
+
"loss": 0.0002,
|
| 2397 |
+
"reward": 1.875,
|
| 2398 |
+
"reward_std": 0.0,
|
| 2399 |
+
"rewards/accuracy_reward": 0.875,
|
| 2400 |
+
"rewards/format_reward": 1.0,
|
| 2401 |
+
"step": 184
|
| 2402 |
+
},
|
| 2403 |
+
{
|
| 2404 |
+
"completion_length": 491.125,
|
| 2405 |
+
"epoch": 4.868421052631579,
|
| 2406 |
+
"grad_norm": 0.7517932097620719,
|
| 2407 |
+
"kl": 0.00372314453125,
|
| 2408 |
+
"learning_rate": 5.131578947368422e-07,
|
| 2409 |
+
"loss": 0.0001,
|
| 2410 |
+
"reward": 1.9375,
|
| 2411 |
+
"reward_std": 0.07216878235340118,
|
| 2412 |
+
"rewards/accuracy_reward": 0.9375,
|
| 2413 |
+
"rewards/format_reward": 1.0,
|
| 2414 |
+
"step": 185
|
| 2415 |
+
},
|
| 2416 |
+
{
|
| 2417 |
+
"completion_length": 493.3125,
|
| 2418 |
+
"epoch": 4.894736842105263,
|
| 2419 |
+
"grad_norm": 1.5201290264209482,
|
| 2420 |
+
"kl": 0.005126953125,
|
| 2421 |
+
"learning_rate": 5.105263157894736e-07,
|
| 2422 |
+
"loss": 0.0002,
|
| 2423 |
+
"reward": 1.96875,
|
| 2424 |
+
"reward_std": 0.0625,
|
| 2425 |
+
"rewards/accuracy_reward": 0.96875,
|
| 2426 |
+
"rewards/format_reward": 1.0,
|
| 2427 |
+
"step": 186
|
| 2428 |
+
},
|
| 2429 |
+
{
|
| 2430 |
+
"completion_length": 514.46875,
|
| 2431 |
+
"epoch": 4.921052631578947,
|
| 2432 |
+
"grad_norm": 0.0748706505594432,
|
| 2433 |
+
"kl": 0.004302978515625,
|
| 2434 |
+
"learning_rate": 5.078947368421052e-07,
|
| 2435 |
+
"loss": 0.0002,
|
| 2436 |
+
"reward": 2.0,
|
| 2437 |
+
"reward_std": 0.0,
|
| 2438 |
+
"rewards/accuracy_reward": 1.0,
|
| 2439 |
+
"rewards/format_reward": 1.0,
|
| 2440 |
+
"step": 187
|
| 2441 |
+
},
|
| 2442 |
+
{
|
| 2443 |
+
"completion_length": 502.59375,
|
| 2444 |
+
"epoch": 4.947368421052632,
|
| 2445 |
+
"grad_norm": 1.0868228477221615,
|
| 2446 |
+
"kl": 0.004425048828125,
|
| 2447 |
+
"learning_rate": 5.052631578947368e-07,
|
| 2448 |
+
"loss": 0.0002,
|
| 2449 |
+
"reward": 1.90625,
|
| 2450 |
+
"reward_std": 0.0625,
|
| 2451 |
+
"rewards/accuracy_reward": 0.90625,
|
| 2452 |
+
"rewards/format_reward": 1.0,
|
| 2453 |
+
"step": 188
|
| 2454 |
+
},
|
| 2455 |
+
{
|
| 2456 |
+
"completion_length": 510.46875,
|
| 2457 |
+
"epoch": 4.973684210526316,
|
| 2458 |
+
"grad_norm": 0.03543275147216106,
|
| 2459 |
+
"kl": 0.0042724609375,
|
| 2460 |
+
"learning_rate": 5.026315789473684e-07,
|
| 2461 |
+
"loss": 0.0002,
|
| 2462 |
+
"reward": 2.0,
|
| 2463 |
+
"reward_std": 0.0,
|
| 2464 |
+
"rewards/accuracy_reward": 1.0,
|
| 2465 |
+
"rewards/format_reward": 1.0,
|
| 2466 |
+
"step": 189
|
| 2467 |
+
},
|
| 2468 |
+
{
|
| 2469 |
+
"completion_length": 515.0,
|
| 2470 |
+
"epoch": 5.0,
|
| 2471 |
+
"grad_norm": 1.2489724519707108,
|
| 2472 |
+
"kl": 0.0037078857421875,
|
| 2473 |
+
"learning_rate": 5e-07,
|
| 2474 |
+
"loss": 0.0002,
|
| 2475 |
+
"reward": 1.8000000715255737,
|
| 2476 |
+
"reward_std": 0.4000000059604645,
|
| 2477 |
+
"rewards/accuracy_reward": 0.800000011920929,
|
| 2478 |
+
"rewards/format_reward": 1.0,
|
| 2479 |
+
"step": 190
|
| 2480 |
+
}
|
| 2481 |
+
],
|
| 2482 |
+
"logging_steps": 1.0,
|
| 2483 |
+
"max_steps": 380,
|
| 2484 |
+
"num_input_tokens_seen": 0,
|
| 2485 |
+
"num_train_epochs": 10,
|
| 2486 |
+
"save_steps": 38,
|
| 2487 |
+
"stateful_callbacks": {
|
| 2488 |
+
"TrainerControl": {
|
| 2489 |
+
"args": {
|
| 2490 |
+
"should_epoch_stop": false,
|
| 2491 |
+
"should_evaluate": false,
|
| 2492 |
+
"should_log": false,
|
| 2493 |
+
"should_save": true,
|
| 2494 |
+
"should_training_stop": false
|
| 2495 |
+
},
|
| 2496 |
+
"attributes": {}
|
| 2497 |
+
}
|
| 2498 |
+
},
|
| 2499 |
+
"total_flos": 0.0,
|
| 2500 |
+
"train_batch_size": 1,
|
| 2501 |
+
"trial_name": null,
|
| 2502 |
+
"trial_params": null
|
| 2503 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:725be0d36ddb499caf3145385836714def828e345f727c5b8cf2dc9aaa8c2f83
|
| 3 |
+
size 7992
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|