ayameRushia's picture
update model card README.md
302702e
|
raw
history blame
3.69 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice
model-index:
  - name: ''
    results: []

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3969
  • Wer: 0.2646

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.78 100 4.5645 1.0
No log 1.55 200 2.9016 1.0
No log 2.33 300 2.2666 1.0982
No log 3.1 400 0.6079 0.6376
3.2188 3.88 500 0.4985 0.5008
3.2188 4.65 600 0.4477 0.4469
3.2188 5.43 700 0.3953 0.3915
3.2188 6.2 800 0.4319 0.3921
3.2188 6.98 900 0.4171 0.3698
0.2193 7.75 1000 0.3957 0.3600
0.2193 8.53 1100 0.3730 0.3493
0.2193 9.3 1200 0.3780 0.3348
0.2193 10.08 1300 0.4133 0.3568
0.2193 10.85 1400 0.3984 0.3193
0.1129 11.63 1500 0.3845 0.3174
0.1129 12.4 1600 0.3882 0.3162
0.1129 13.18 1700 0.3982 0.3008
0.1129 13.95 1800 0.3902 0.3198
0.1129 14.73 1900 0.4082 0.3237
0.0765 15.5 2000 0.3732 0.3126
0.0765 16.28 2100 0.3893 0.3001
0.0765 17.05 2200 0.4168 0.3083
0.0765 17.83 2300 0.4193 0.3044
0.0765 18.6 2400 0.4006 0.3013
0.0588 19.38 2500 0.3836 0.2892
0.0588 20.16 2600 0.3761 0.2903
0.0588 20.93 2700 0.3895 0.2930
0.0588 21.71 2800 0.3885 0.2791
0.0588 22.48 2900 0.3902 0.2891
0.0448 23.26 3000 0.4200 0.2849
0.0448 24.03 3100 0.4013 0.2799
0.0448 24.81 3200 0.4039 0.2731
0.0448 25.58 3300 0.3970 0.2647
0.0448 26.36 3400 0.4081 0.2690
0.0351 27.13 3500 0.4090 0.2674
0.0351 27.91 3600 0.3953 0.2663
0.0351 28.68 3700 0.4044 0.2650
0.0351 29.46 3800 0.3969 0.2646

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.1.dev0
  • Tokenizers 0.11.0