|
import re
|
|
import argparse
|
|
import unicodedata
|
|
from typing import Dict
|
|
import torch
|
|
import torchaudio
|
|
from datasets import load_dataset, load_metric, Audio, Dataset
|
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
|
import re
|
|
|
|
chars_to_ignore_regex = '[\é\!\,\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\’\—\–\·]'
|
|
|
|
def log_results(result: Dataset, args: Dict[str, str]):
|
|
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
|
|
|
log_outputs = args.log_outputs
|
|
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
|
|
|
|
|
wer = load_metric("wer")
|
|
cer = load_metric("cer")
|
|
|
|
|
|
wer_result = wer.compute(references=result["sentence"], predictions=result["pred_strings"])
|
|
cer_result = cer.compute(references=result["sentence"], predictions=result["pred_strings"])
|
|
|
|
|
|
result_str = (
|
|
f"WER: {wer_result}\n"
|
|
f"CER: {cer_result}"
|
|
)
|
|
print(result_str)
|
|
|
|
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
|
f.write(result_str)
|
|
|
|
|
|
if log_outputs is not None:
|
|
pred_file = f"log_{dataset_id}_predictions.txt"
|
|
target_file = f"log_{dataset_id}_targets.txt"
|
|
|
|
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
|
|
|
|
|
def write_to_file(batch, i):
|
|
p.write(f"{i}" + "\n")
|
|
p.write(batch["pred_strings"] + "\n")
|
|
t.write(f"{i}" + "\n")
|
|
t.write(batch["sentence"] + "\n")
|
|
|
|
result.map(write_to_file, with_indices=True)
|
|
|
|
def load_data(dataset_id, language, split='test'):
|
|
test_dataset = load_dataset(dataset_id, language, split=split, use_auth_token=True)
|
|
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
|
|
return test_dataset
|
|
|
|
def speech_file_to_array_fn(batch):
|
|
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " "
|
|
batch["sentence"] = re.sub('!', '', batch["sentence"]).lower() + " "
|
|
batch["sentence"] = batch["sentence"].replace('\"',"").replace("&","").replace("'","").replace("(","").lower() + " "
|
|
batch["sentence"] = batch["sentence"].replace('[',"").replace("]","").replace("\\","").replace("«","").replace("»","").replace(")","").lower() + " "
|
|
batch["sentence"] = batch["sentence"].replace(" "," ").replace(" "," ").replace(" "," ").lower() + " "
|
|
batch["speech"] = batch["audio"]["array"]
|
|
return batch
|
|
|
|
def main(args):
|
|
test_dataset = load_data(args.dataset, args.config, args.split)
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
model_id = args.model_id
|
|
|
|
def evaluate_with_lm(batch):
|
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
|
with torch.no_grad():
|
|
logits = model(**inputs.to('cuda')).logits
|
|
int_result = processor.batch_decode(logits.cpu().numpy())
|
|
batch["pred_strings"] = int_result.text
|
|
return batch
|
|
|
|
def evaluate(batch):
|
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
|
with torch.no_grad():
|
|
logits = model(inputs.input_values.to('cuda')).logits
|
|
pred_ids = torch.argmax(logits, dim=-1)
|
|
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
|
|
return batch
|
|
|
|
if args.lm:
|
|
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_id,use_auth_token=True)
|
|
model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
|
|
model.to('cuda')
|
|
result = test_dataset.map(evaluate_with_lm, batched=True, batch_size=4)
|
|
else:
|
|
processor = Wav2Vec2Processor.from_pretrained(model_id,use_auth_token=True)
|
|
model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
|
|
model.to("cuda")
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=4)
|
|
|
|
log_results(result, args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
|
)
|
|
parser.add_argument(
|
|
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
|
)
|
|
parser.add_argument(
|
|
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
|
)
|
|
parser.add_argument(
|
|
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
|
)
|
|
parser.add_argument(
|
|
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
|
)
|
|
parser.add_argument(
|
|
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
|
)
|
|
parser.add_argument(
|
|
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
|
)
|
|
parser.add_argument(
|
|
"--lm", action='store_true', help="Using language model for evaluation or not."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
main(args) |