ayameRushia commited on
Commit
a68f97d
·
1 Parent(s): 15d2321

Upload eval.py

Browse files
Files changed (1) hide show
  1. eval.py +131 -0
eval.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import argparse
3
+ import unicodedata
4
+ from typing import Dict
5
+ import torch
6
+ import torchaudio
7
+ from datasets import load_dataset, load_metric, Audio, Dataset
8
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
9
+ import re
10
+
11
+ chars_to_ignore_regex = '[\é\!\,\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\’\—\–\·]'
12
+
13
+ def log_results(result: Dataset, args: Dict[str, str]):
14
+ """ DO NOT CHANGE. This function computes and logs the result metrics. """
15
+
16
+ log_outputs = args.log_outputs
17
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
18
+
19
+ # load metric
20
+ wer = load_metric("wer")
21
+ cer = load_metric("cer")
22
+
23
+ # compute metrics
24
+ wer_result = wer.compute(references=result["sentence"], predictions=result["pred_strings"])
25
+ cer_result = cer.compute(references=result["sentence"], predictions=result["pred_strings"])
26
+
27
+ # print & log results
28
+ result_str = (
29
+ f"WER: {wer_result}\n"
30
+ f"CER: {cer_result}"
31
+ )
32
+ print(result_str)
33
+
34
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
35
+ f.write(result_str)
36
+
37
+ # log all results in text file. Possibly interesting for analysis
38
+ if log_outputs is not None:
39
+ pred_file = f"log_{dataset_id}_predictions.txt"
40
+ target_file = f"log_{dataset_id}_targets.txt"
41
+
42
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
43
+
44
+ # mapping function to write output
45
+ def write_to_file(batch, i):
46
+ p.write(f"{i}" + "\n")
47
+ p.write(batch["pred_strings"] + "\n")
48
+ t.write(f"{i}" + "\n")
49
+ t.write(batch["sentence"] + "\n")
50
+
51
+ result.map(write_to_file, with_indices=True)
52
+
53
+ def load_data(dataset_id, language, split='test'):
54
+ test_dataset = load_dataset(dataset_id, language, split=split, use_auth_token=True)
55
+ test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
56
+ return test_dataset
57
+
58
+ def speech_file_to_array_fn(batch):
59
+ batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " "
60
+ batch["sentence"] = re.sub('!', '', batch["sentence"]).lower() + " "
61
+ batch["sentence"] = batch["sentence"].replace('\"',"").replace("&","").replace("'","").replace("(","").lower() + " "
62
+ batch["sentence"] = batch["sentence"].replace('[',"").replace("]","").replace("\\","").replace("«","").replace("»","").replace(")","").lower() + " "
63
+ batch["sentence"] = batch["sentence"].replace(" "," ").replace(" "," ").replace(" "," ").lower() + " "
64
+ batch["speech"] = batch["audio"]["array"]
65
+ return batch
66
+
67
+ def main(args):
68
+ test_dataset = load_data(args.dataset, args.config, args.split)
69
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
70
+ model_id = args.model_id
71
+
72
+ def evaluate_with_lm(batch):
73
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
74
+ with torch.no_grad():
75
+ logits = model(**inputs.to('cuda')).logits
76
+ int_result = processor.batch_decode(logits.cpu().numpy())
77
+ batch["pred_strings"] = int_result.text
78
+ return batch
79
+
80
+ def evaluate(batch):
81
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
82
+ with torch.no_grad():
83
+ logits = model(inputs.input_values.to('cuda')).logits
84
+ pred_ids = torch.argmax(logits, dim=-1)
85
+ batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
86
+ return batch
87
+
88
+ if args.lm:
89
+ processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_id,use_auth_token=True)
90
+ model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
91
+ model.to('cuda')
92
+ result = test_dataset.map(evaluate_with_lm, batched=True, batch_size=4)
93
+ else:
94
+ processor = Wav2Vec2Processor.from_pretrained(model_id,use_auth_token=True)
95
+ model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
96
+ model.to("cuda")
97
+ result = test_dataset.map(evaluate, batched=True, batch_size=4)
98
+
99
+ log_results(result, args)
100
+
101
+
102
+ if __name__ == "__main__":
103
+ parser = argparse.ArgumentParser()
104
+
105
+ parser.add_argument(
106
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
107
+ )
108
+ parser.add_argument(
109
+ "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
110
+ )
111
+ parser.add_argument(
112
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
113
+ )
114
+ parser.add_argument(
115
+ "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
116
+ )
117
+ parser.add_argument(
118
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
119
+ )
120
+ parser.add_argument(
121
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
122
+ )
123
+ parser.add_argument(
124
+ "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
125
+ )
126
+ parser.add_argument(
127
+ "--lm", action='store_true', help="Using language model for evaluation or not."
128
+ )
129
+ args = parser.parse_args()
130
+
131
+ main(args)