ayameRushia
commited on
Commit
·
a68f97d
1
Parent(s):
15d2321
Upload eval.py
Browse files
eval.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import argparse
|
3 |
+
import unicodedata
|
4 |
+
from typing import Dict
|
5 |
+
import torch
|
6 |
+
import torchaudio
|
7 |
+
from datasets import load_dataset, load_metric, Audio, Dataset
|
8 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
9 |
+
import re
|
10 |
+
|
11 |
+
chars_to_ignore_regex = '[\é\!\,\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\’\—\–\·]'
|
12 |
+
|
13 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
14 |
+
""" DO NOT CHANGE. This function computes and logs the result metrics. """
|
15 |
+
|
16 |
+
log_outputs = args.log_outputs
|
17 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
18 |
+
|
19 |
+
# load metric
|
20 |
+
wer = load_metric("wer")
|
21 |
+
cer = load_metric("cer")
|
22 |
+
|
23 |
+
# compute metrics
|
24 |
+
wer_result = wer.compute(references=result["sentence"], predictions=result["pred_strings"])
|
25 |
+
cer_result = cer.compute(references=result["sentence"], predictions=result["pred_strings"])
|
26 |
+
|
27 |
+
# print & log results
|
28 |
+
result_str = (
|
29 |
+
f"WER: {wer_result}\n"
|
30 |
+
f"CER: {cer_result}"
|
31 |
+
)
|
32 |
+
print(result_str)
|
33 |
+
|
34 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
35 |
+
f.write(result_str)
|
36 |
+
|
37 |
+
# log all results in text file. Possibly interesting for analysis
|
38 |
+
if log_outputs is not None:
|
39 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
40 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
41 |
+
|
42 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
43 |
+
|
44 |
+
# mapping function to write output
|
45 |
+
def write_to_file(batch, i):
|
46 |
+
p.write(f"{i}" + "\n")
|
47 |
+
p.write(batch["pred_strings"] + "\n")
|
48 |
+
t.write(f"{i}" + "\n")
|
49 |
+
t.write(batch["sentence"] + "\n")
|
50 |
+
|
51 |
+
result.map(write_to_file, with_indices=True)
|
52 |
+
|
53 |
+
def load_data(dataset_id, language, split='test'):
|
54 |
+
test_dataset = load_dataset(dataset_id, language, split=split, use_auth_token=True)
|
55 |
+
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
|
56 |
+
return test_dataset
|
57 |
+
|
58 |
+
def speech_file_to_array_fn(batch):
|
59 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " "
|
60 |
+
batch["sentence"] = re.sub('!', '', batch["sentence"]).lower() + " "
|
61 |
+
batch["sentence"] = batch["sentence"].replace('\"',"").replace("&","").replace("'","").replace("(","").lower() + " "
|
62 |
+
batch["sentence"] = batch["sentence"].replace('[',"").replace("]","").replace("\\","").replace("«","").replace("»","").replace(")","").lower() + " "
|
63 |
+
batch["sentence"] = batch["sentence"].replace(" "," ").replace(" "," ").replace(" "," ").lower() + " "
|
64 |
+
batch["speech"] = batch["audio"]["array"]
|
65 |
+
return batch
|
66 |
+
|
67 |
+
def main(args):
|
68 |
+
test_dataset = load_data(args.dataset, args.config, args.split)
|
69 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
70 |
+
model_id = args.model_id
|
71 |
+
|
72 |
+
def evaluate_with_lm(batch):
|
73 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
74 |
+
with torch.no_grad():
|
75 |
+
logits = model(**inputs.to('cuda')).logits
|
76 |
+
int_result = processor.batch_decode(logits.cpu().numpy())
|
77 |
+
batch["pred_strings"] = int_result.text
|
78 |
+
return batch
|
79 |
+
|
80 |
+
def evaluate(batch):
|
81 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
82 |
+
with torch.no_grad():
|
83 |
+
logits = model(inputs.input_values.to('cuda')).logits
|
84 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
85 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
|
86 |
+
return batch
|
87 |
+
|
88 |
+
if args.lm:
|
89 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_id,use_auth_token=True)
|
90 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
|
91 |
+
model.to('cuda')
|
92 |
+
result = test_dataset.map(evaluate_with_lm, batched=True, batch_size=4)
|
93 |
+
else:
|
94 |
+
processor = Wav2Vec2Processor.from_pretrained(model_id,use_auth_token=True)
|
95 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_id,use_auth_token=True)
|
96 |
+
model.to("cuda")
|
97 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=4)
|
98 |
+
|
99 |
+
log_results(result, args)
|
100 |
+
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
parser = argparse.ArgumentParser()
|
104 |
+
|
105 |
+
parser.add_argument(
|
106 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
107 |
+
)
|
108 |
+
parser.add_argument(
|
109 |
+
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
|
110 |
+
)
|
111 |
+
parser.add_argument(
|
112 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
113 |
+
)
|
114 |
+
parser.add_argument(
|
115 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
116 |
+
)
|
117 |
+
parser.add_argument(
|
118 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
|
119 |
+
)
|
120 |
+
parser.add_argument(
|
121 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
|
122 |
+
)
|
123 |
+
parser.add_argument(
|
124 |
+
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
|
125 |
+
)
|
126 |
+
parser.add_argument(
|
127 |
+
"--lm", action='store_true', help="Using language model for evaluation or not."
|
128 |
+
)
|
129 |
+
args = parser.parse_args()
|
130 |
+
|
131 |
+
main(args)
|