Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,9 +1,90 @@
|
|
1 |
---
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- model_hub_mixin
|
4 |
- pytorch_model_hub_mixin
|
|
|
5 |
---
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
pipeline_tag: text-generation
|
5 |
tags:
|
6 |
- model_hub_mixin
|
7 |
- pytorch_model_hub_mixin
|
8 |
+
dataset: HuggingFaceFW/fineweb-edu
|
9 |
---
|
10 |
|
11 |
+
# DAT-sa16-ra16-nr128-ns2048-sh16-nkvh8-1.27B
|
12 |
+
|
13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
14 |
+
|
15 |
+
This is a Dual-Attention Transformer Language Model, trained on the `fineweb-edu` dataset. The model is 1B parameters.
|
16 |
+
|
17 |
+
|
18 |
+
## Model Details
|
19 |
+
|
20 |
+
| Size | Training Tokens| Layers | Model Dimension | Self-Attention Heads | Relational Attention Heads | Relation Dimension | Context Length |
|
21 |
+
|--|--|--|--|--|--|--|--|
|
22 |
+
| 1B | 10B | 24| 2048 | 16 | 16 | 128 | 1024 |
|
23 |
+
|
24 |
+
|
25 |
+
### Model Description
|
26 |
+
|
27 |
+
- **Developed by:** Awni Altabaa, John Lafferty
|
28 |
+
- **Model type:** Decoder-only Dual Attention Transformer
|
29 |
+
- **Tokenizer:** GPT-2 BPE tokenizer
|
30 |
+
- **Language(s):** English
|
31 |
+
<!-- - **License:** MIT -->
|
32 |
+
<!-- - **Contact:** awni.altabaa@yale.edu -->
|
33 |
+
- **Date:** August, 2024
|
34 |
+
|
35 |
+
### Model Sources
|
36 |
+
|
37 |
+
- **Repository:** https://github.com/Awni00/abstract_transformer
|
38 |
+
- **Paper:** [Disentangling and Integrating Relational and Sensory Information in Transformer Architectures](https://arxiv.org/abs/2405.16727)
|
39 |
+
- **Huggingface Collection:** [Dual Attention Transformer Collection](https://huggingface.co/collections/awni00/dual-attention-transformer-66c23425a545b0cefe4b9489)
|
40 |
+
|
41 |
+
|
42 |
+
## Model Usage
|
43 |
+
|
44 |
+
Use the code below to get started with the model. First, install the `dual-attention` [python package hosted on PyPI](https://pypi.org/project/dual-attention/) via `pip install dual-attention`.
|
45 |
+
|
46 |
+
To load directly from huggingface hub, use the HFHub wrapper.
|
47 |
+
```
|
48 |
+
from dual_attention.hf import DualAttnTransformerLM_HFHub
|
49 |
+
|
50 |
+
DualAttnTransformerLM_HFHub.from_pretrained('awni00/DAT-sa16-ra16-nr128-ns2048-sh16-nkvh8-1.27B')
|
51 |
+
```
|
52 |
+
|
53 |
+
## Training Details
|
54 |
+
|
55 |
+
The model was trained using the following setup:
|
56 |
+
- **Architecture:** Decoder-only Dual Attention Transformer
|
57 |
+
- **Framework:** PyTorch
|
58 |
+
- **Optimizer:** AdamW
|
59 |
+
- **Learning Rate:** 6e-4 (peak)
|
60 |
+
- **Weight Decay:** 0.1
|
61 |
+
- **Batch Size:** 524,288 Tokens
|
62 |
+
- **Sequence Length:** 1024 tokens
|
63 |
+
- **Total Training Tokens:** 10B Tokens
|
64 |
+
|
65 |
+
For more detailed training information, please refer to the paper.
|
66 |
+
|
67 |
+
## Evaluation
|
68 |
+
|
69 |
+
See paper.
|
70 |
+
|
71 |
+
|
72 |
+
## Model Interpretability Analysis
|
73 |
+
|
74 |
+
The [DAT-LM-Visualization app](https://huggingface.co/spaces/awni00/DAT-LM-Visualization/) is built to visualize the representations learned in a Dual Attention Transformer language model. It is hosted on Huggingface spaces using their free CPU resources. You can select a pre-trained DAT-LM model, enter a prompt, and visualize the internal representations in different parts of the model. You can also run the app locally (e.g., to use your own GPU) via the PyPI package.
|
75 |
+
|
76 |
+
Also, see paper.
|
77 |
+
|
78 |
+
## Citation
|
79 |
+
|
80 |
+
```
|
81 |
+
@misc{altabaa2024disentanglingintegratingrelationalsensory,
|
82 |
+
title={Disentangling and Integrating Relational and Sensory Information in Transformer Architectures},
|
83 |
+
author={Awni Altabaa and John Lafferty},
|
84 |
+
year={2024},
|
85 |
+
eprint={2405.16727},
|
86 |
+
archivePrefix={arXiv},
|
87 |
+
primaryClass={cs.LG},
|
88 |
+
url={https://arxiv.org/abs/2405.16727},
|
89 |
+
}
|
90 |
+
```
|