|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: MAScIR_elderly_whisper-medium-LoRA-for_test |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# MAScIR_elderly_whisper-medium-LoRA-for_test |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0403 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.2935 | 0.19 | 100 | 0.2595 | |
|
| 0.3101 | 0.38 | 200 | 0.2421 | |
|
| 0.2404 | 0.57 | 300 | 0.2664 | |
|
| 0.2303 | 0.76 | 400 | 0.2072 | |
|
| 0.2021 | 0.95 | 500 | 0.1893 | |
|
| 0.1075 | 1.14 | 600 | 0.1650 | |
|
| 0.1222 | 1.33 | 700 | 0.1328 | |
|
| 0.1036 | 1.52 | 800 | 0.1077 | |
|
| 0.0908 | 1.71 | 900 | 0.0835 | |
|
| 0.0701 | 1.9 | 1000 | 0.0727 | |
|
| 0.029 | 2.09 | 1100 | 0.0587 | |
|
| 0.0264 | 2.28 | 1200 | 0.0522 | |
|
| 0.0164 | 2.47 | 1300 | 0.0507 | |
|
| 0.0162 | 2.66 | 1400 | 0.0459 | |
|
| 0.0151 | 2.85 | 1500 | 0.0403 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|