Abdul Fatir Ansari commited on
Commit
8aa33a2
1 Parent(s): bbe123c

Update README

Browse files
Files changed (1) hide show
  1. README.md +26 -11
README.md CHANGED
@@ -10,16 +10,33 @@ tags:
10
  - time-series
11
  ---
12
 
13
- # Chronos-Bolt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
- Pre-release of Chronos-Bolt pretrained time series forecasting models.
16
 
17
  ## Usage
18
 
19
- A minimal example showing how to perform inference using Chronos-Bolt with AutoGluon:
 
 
 
 
20
 
21
  ```
22
- pip install --pre autogluon
23
  ```
24
 
25
  ```python
@@ -27,21 +44,19 @@ from autogluon.timeseries import TimeSeriesPredictor, TimeSeriesDataFrame
27
 
28
  df = TimeSeriesDataFrame("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv")
29
 
30
- predictions = TimeSeriesPredictor().fit(
31
  df,
32
  hyperparameters={
33
- "Chronos": [
34
- {"model_path": "autogluon/chronos-bolt-base"},
35
- ]
36
  },
37
- ).predict(
38
- df
39
  )
 
 
40
  ```
41
 
42
  ## Citation
43
 
44
- If you find Chronos models useful for your research, please consider citing the associated [paper](https://arxiv.org/abs/2403.07815):
45
 
46
  ```
47
  @article{ansari2024chronos,
 
10
  - time-series
11
  ---
12
 
13
+ # Chronos⚡️-Base
14
+
15
+ Chronos⚡️ (read: Chronos-Bolt) is a family of pretrained time series forecasting models which can be used for zero-shot forecasting. Chronos⚡️ models are based on the [T5 architecture](https://arxiv.org/abs/1910.10683) and are available in the following sizes.
16
+
17
+
18
+ <div align="center">
19
+
20
+ | Model | Parameters | Based on |
21
+ | ---------------------------------------------------------------------- | ---------- | ---------------------------------------------------------------------- |
22
+ | [**chronos-bolt-tiny**](https://huggingface.co/autogluon/chronos-bolt-tiny) | 9M | [t5-efficient-tiny](https://huggingface.co/google/t5-efficient-tiny) |
23
+ | [**chronos-bolt-mini**](https://huggingface.co/autogluon/chronos-bolt-mini) | 21M | [t5-efficient-mini](https://huggingface.co/google/t5-efficient-mini) |
24
+ | [**chronos-bolt-small**](https://huggingface.co/autogluon/chronos-bolt-small) | 48M | [t5-efficient-small](https://huggingface.co/google/t5-efficient-small) |
25
+ | [**chronos-bolt-base**](https://huggingface.co/autogluon/chronos-bolt-base) | 205M | [t5-efficient-base](https://huggingface.co/google/t5-efficient-base) |
26
+
27
+ </div>
28
 
 
29
 
30
  ## Usage
31
 
32
+ > [!WARNING]
33
+ > Chronos⚡️ models will be available in the next stable release of AutoGluon, so the following instructions will only work once AutoGluon 1.2 has been released.
34
+
35
+
36
+ A minimal example showing how to perform zero-shot inference using Chronos⚡️ with AutoGluon:
37
 
38
  ```
39
+ pip install autogluon
40
  ```
41
 
42
  ```python
 
44
 
45
  df = TimeSeriesDataFrame("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv")
46
 
47
+ predictor = TimeSeriesPredictor(prediction_length=48).fit(
48
  df,
49
  hyperparameters={
50
+ "Chronos": {"model_path": "autogluon/chronos-bolt-base"},
 
 
51
  },
 
 
52
  )
53
+
54
+ predictions = predictor.predict(df)
55
  ```
56
 
57
  ## Citation
58
 
59
+ If you find Chronos or Chronos⚡️ models useful for your research, please consider citing the associated [paper](https://arxiv.org/abs/2403.07815):
60
 
61
  ```
62
  @article{ansari2024chronos,