lewtun's picture
lewtun HF staff
Add evaluation results on the sst2 config and validation split of glue (#118)
9b4ac79
|
raw
history blame
4.25 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: autoevaluate-binary-classification
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          args: sst2
        metrics:
          - type: accuracy
            value: 0.8967889908256881
            name: Accuracy
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          config: sst2
          split: validation
        metrics:
          - type: accuracy
            value: 0.8967889908256881
            name: Accuracy
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjQ3YmFiNmE0Y2FmNWUwZTQ2NDViMzEzMjk1ZWQyZTkyMDBmNzZkNzhmNWRmZDJiZjc0ZTEzODVhYTRlNmUxZSIsInZlcnNpb24iOjF9.qb-M6CZpsMnr7FGCaSL8vti0sh85bfzuwGqKM5nNW7fcbyi1SbIxDisDxVQ0SmZwl2Plif6lT3bBU9mer1NmCQ
          - type: precision
            value: 0.8898678414096917
            name: Precision
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjE1MmVmODU2OTYwMTNlZjE5ZjlmY2Y5NTM3M2E4YjQ1MmE5Yjc1OTAwYjIwYWRjNGI5ZmZlZjI5NTYwZWJlYiIsInZlcnNpb24iOjF9.yf-1IHvGFLLBUPwWXCvlxblTTyeTU_KLqRLuCWDKO2coWWFKvGl_dYteujY1bUGqqzX2Ig6geTt0tVi5MuX9Aw
          - type: recall
            value: 0.9099099099099099
            name: Recall
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTJlYTdlYWFkZDQzZjJjNjdhMDk1ZGYxYWUzNzczNGQ0MmRjMzdkNmQyYTI2YjA4N2RlNDEzN2Y4MDRmMWYwYyIsInZlcnNpb24iOjF9.Hw9PHkve1f8IiZTNAolCMmPpyyFiAOhZO7FhTxlQPGNJ3oUjzJi7S1wxVte0ZLOOXNa-jNfC-x6qOfHbJqbQDA
          - type: auc
            value: 0.9672186789593331
            name: AUC
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjhiNjBjYzQzNTg2ZDI0MDU4YWIyYjhlYzNjYjg0ODdkNTE5ZmUxNzk0OWQ0ZTFiNDY2OWMxNjVjMzk5ZTg0ZCIsInZlcnNpb24iOjF9.t9A1giBHzuGtEYs4KexQNWuj4QoSQppx30xmB6Thqhs4tE8JpglMyGB2P8KDhCquA-3a2gK2LiVT90VaHUcwAw
          - type: f1
            value: 0.8997772828507795
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODM4ZWZlNmNmODI5NmI1NmEzYTQ3MDI4ZDUxNjQxZTczY2VmMmY5ODg3OWM3ZjhlZTRlYmJkOTVlZmNkYWMyZiIsInZlcnNpb24iOjF9.P_w0jtDB66s20puJ_hvpad7JPGGgvDHHBhMxhfqmxGKU1oxba_OXgREKOxNzogsPsbXGlq7xtCPoSQSdR9VyCw
          - type: loss
            value: 0.30092036724090576
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWVhNDQ4ZDEwNzg3NGY0MjdiNmRiZGQ2ZDM5ZTI0MzNlZGZjMTNkY2I2OWIwYjk4MmIyZDk0YjgxYTZmMWE5NSIsInZlcnNpb24iOjF9.5y2feXY4wZUF1xfADCM5JQ4SOqduuUtD_p0BZzkrV7iKoJOvYDtaIpeKcGLHuX6Ikj_Kwx_nPVqBVwK6ALdEAg
          - type: matthews_correlation
            value: 0.793630584795814
            name: matthews_correlation
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWQxMzk2MzM2NmJiOWMwMGIwZDlkNTNiZmI0MWU1NjBjNTViZjk3YjQxYzU2NTUxMmFkNmM4NTYyOTJjZDQwZCIsInZlcnNpb24iOjF9.Vb_ZGOXUXO2pD0F1UuUczgDr2DusYAMpQF0cm8xpVtPhPIYGQba6AKiDJh12MoeNZIKVMUwi3cmYO1erGsbUAQ

binary-classification

This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3009
  • Accuracy: 0.8968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.175 1.0 4210 0.3009 0.8968

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1