lewtun's picture
lewtun HF staff
Add evaluation results on the sst2 config and validation split of glue
83449f9
|
raw
history blame
4.25 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: autoevaluate-binary-classification
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          args: sst2
        metrics:
          - type: accuracy
            value: 0.8967889908256881
            name: Accuracy
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          config: sst2
          split: validation
        metrics:
          - type: accuracy
            value: 0.8967889908256881
            name: Accuracy
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODYyYzVkYjBhYjYzYzJjOWVmNmM3ZjU0NGUwMDdlM2YzYzc0YTZhODg3OWU5MDAxNDFlYmQxYTY5NWNkODEzNSIsInZlcnNpb24iOjF9.2sVz9OnBR_sWbfCXaPECZrdxUA1ec4zOrTQa0mWMnHZO22-mb7oUUto4Zf88neSZd0GpKKFlp3_DtaZE-fR5DA
          - type: precision
            value: 0.8898678414096917
            name: Precision
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDY2NGUxYWEzNmI0ZDg3NmRlMjA5OTVkZGY1MTlmNDM1MjczNGQxNzY4NjVmZTM2NzU5MGRhNzU3MTZmZjlkNCIsInZlcnNpb24iOjF9.0NYcCYHeHqJB7AYk2P3f2zysLIdHHVvjgKX5Rfk4bCfECDjxTzDYKyH_nNQ-Thifrd3j517NkFGeJNX22bSZCw
          - type: recall
            value: 0.9099099099099099
            name: Recall
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGNkMGUwNTBmZDgzZDJjNDA1ZjA2MjE4ZWFjZGQ2NWQ1ZmU4NjAxMGU1Mzc5YTg4MzcwOTQ1YTgzM2EyNmZkOCIsInZlcnNpb24iOjF9.5iPQ7kP_QKTS5tdpu0KsVVLI26ala7kxBP1eilPignOLCc-gmhuJcrufQUGf0VslApT1gQUb4l6PUvP74FwDDQ
          - type: auc
            value: 0.9672186789593331
            name: AUC
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTI3MGE5NmYyNzY5YzQ3MmJmNGQ0NjgwOTk1YzY3ZjRjNjViNzcxZDgyNzMxMDJiZTc3NjE2ZGRjYzE2ZThmNSIsInZlcnNpb24iOjF9.qqFgxzJYtr7hZXTn07uXtj8sfaBxWToyDXdsigQXxgA4C7X2QK42b5x1E8j1WKp0sHHWltmBpslNPuFx9JM6DA
          - type: f1
            value: 0.8997772828507795
            name: F1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWE0ZTg2NmRhMTYzZDFiZWZlNzlhMzI1OGYyOGM2OTA1NTFiOTRmZjZhODdlOWE2ZWZlMWIwNjJkZmY1ZWEzNCIsInZlcnNpb24iOjF9.6cKV-SgBLxoYCoJE77LNzhlHlGSYHlmdSH-ODl2JlisdfldiCiKcyZ81fjEwYu74uznbkVN09s_xBaZJ4Og2Aw
          - type: loss
            value: 0.30092036724090576
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzk0Y2RkYzQ5MTMxNzAzZGRlYTU2OGYwYzExZmYxYjQ2YTBkYTM1NjY0YjhlOGExMTkyYmM5ZDAxY2QwOWUxOCIsInZlcnNpb24iOjF9.i7J8HW_2QfiLWWqddRyy9d383AGwJo4QUbC-xZmNtRaUn7wq-3HCjPFCVujzTZNFjiL_6KWSEiFr7AKjRwOKDA
          - type: matthews_correlation
            value: 0.793630584795814
            name: matthews_correlation
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWM2NjViY2VjNWI5MzdjNTlhMjFhNzg0ZWE5NDBhNWYwN2ZjNjEyZTEyZTM3YWFhY2ZmZGM5NWM1YThmNDhjNyIsInZlcnNpb24iOjF9.ocagJb9gQAFPpBSGzRVAud6-nxVtNVJ-Jqy97BlUMwRl0bTurTa22TUYfZyXkF9fjvMZ9o3A5xtwPSQGuOypDw

binary-classification

This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3009
  • Accuracy: 0.8968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.175 1.0 4210 0.3009 0.8968

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1