medication-lists / README.md
cmcmaster's picture
End of training
68e677f
|
raw
history blame
3.47 kB
metadata
license: apache-2.0
base_model: google/flan-t5-small
tags:
  - generated_from_trainer
model-index:
  - name: medication-lists
    results: []

medication-lists

This model is a fine-tuned version of google/flan-t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1133

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
1.6316 0.46 50 0.6287
0.6403 0.93 100 0.3378
0.4213 1.39 150 0.2460
0.3452 1.85 200 0.2184
0.306 2.31 250 0.1903
0.2634 2.78 300 0.1807
0.2423 3.24 350 0.1630
0.2224 3.7 400 0.1599
0.2107 4.17 450 0.1522
0.1922 4.63 500 0.1515
0.1887 5.09 550 0.1394
0.1821 5.56 600 0.1414
0.1705 6.02 650 0.1378
0.1602 6.48 700 0.1330
0.1579 6.94 750 0.1300
0.1497 7.41 800 0.1282
0.1534 7.87 850 0.1277
0.147 8.33 900 0.1274
0.1395 8.8 950 0.1204
0.1361 9.26 1000 0.1235
0.1353 9.72 1050 0.1210
0.1303 10.19 1100 0.1220
0.132 10.65 1150 0.1232
0.1262 11.11 1200 0.1193
0.1228 11.57 1250 0.1229
0.1261 12.04 1300 0.1215
0.1204 12.5 1350 0.1163
0.12 12.96 1400 0.1189
0.11 13.43 1450 0.1173
0.1183 13.89 1500 0.1149
0.108 14.35 1550 0.1178
0.1122 14.81 1600 0.1150
0.1126 15.28 1650 0.1157
0.112 15.74 1700 0.1152
0.1046 16.2 1750 0.1156
0.1057 16.67 1800 0.1138
0.1067 17.13 1850 0.1129
0.1078 17.59 1900 0.1140
0.1043 18.06 1950 0.1135
0.1033 18.52 2000 0.1138
0.1017 18.98 2050 0.1140
0.102 19.44 2100 0.1125
0.1012 19.91 2150 0.1133

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.11.0
  • Tokenizers 0.14.1