athirdpath leaderboard-pr-bot commited on
Commit
47ee831
1 Parent(s): 42eaee4

Adding Evaluation Results (#1)

Browse files

- Adding Evaluation Results (7f71001fae51c65807ef2533e9e412da1126a914)


Co-authored-by: Open LLM Leaderboard PR Bot <leaderboard-pr-bot@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +110 -2
README.md CHANGED
@@ -1,5 +1,4 @@
1
  ---
2
- base_model: athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1
3
  language:
4
  - en
5
  license: apache-2.0
@@ -10,6 +9,102 @@ tags:
10
  - llama
11
  - trl
12
  - sft
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
  **athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1** further pretrained on 1 epoch of the dirty stories from nothingiisreal/Reddit-Dirty-And-WritingPrompts, with all scores below 2 dropped.
@@ -18,4 +113,17 @@ tags:
18
 
19
  Why do this? I have a niche use case where I cannot increase compute over 8b, and L3/3.1 are the only models in this size category that meet my needs for logic. However, both versions of L3/3.1 have the damn repetition/token overconfidence problem, and this is meant to disrupt that certainty without disrupting the model's ability to function.
20
 
21
- By the way, I *think* it's the lm_head that is causing the looping, but it might be the embeddings being too separated. I'm not going to pay two more times to test them separately, however :p
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
2
  language:
3
  - en
4
  license: apache-2.0
 
9
  - llama
10
  - trl
11
  - sft
12
+ base_model: athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1
13
+ model-index:
14
+ - name: Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit
15
+ results:
16
+ - task:
17
+ type: text-generation
18
+ name: Text Generation
19
+ dataset:
20
+ name: IFEval (0-Shot)
21
+ type: HuggingFaceH4/ifeval
22
+ args:
23
+ num_few_shot: 0
24
+ metrics:
25
+ - type: inst_level_strict_acc and prompt_level_strict_acc
26
+ value: 45.21
27
+ name: strict accuracy
28
+ source:
29
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit
30
+ name: Open LLM Leaderboard
31
+ - task:
32
+ type: text-generation
33
+ name: Text Generation
34
+ dataset:
35
+ name: BBH (3-Shot)
36
+ type: BBH
37
+ args:
38
+ num_few_shot: 3
39
+ metrics:
40
+ - type: acc_norm
41
+ value: 28.02
42
+ name: normalized accuracy
43
+ source:
44
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit
45
+ name: Open LLM Leaderboard
46
+ - task:
47
+ type: text-generation
48
+ name: Text Generation
49
+ dataset:
50
+ name: MATH Lvl 5 (4-Shot)
51
+ type: hendrycks/competition_math
52
+ args:
53
+ num_few_shot: 4
54
+ metrics:
55
+ - type: exact_match
56
+ value: 8.84
57
+ name: exact match
58
+ source:
59
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit
60
+ name: Open LLM Leaderboard
61
+ - task:
62
+ type: text-generation
63
+ name: Text Generation
64
+ dataset:
65
+ name: GPQA (0-shot)
66
+ type: Idavidrein/gpqa
67
+ args:
68
+ num_few_shot: 0
69
+ metrics:
70
+ - type: acc_norm
71
+ value: 5.59
72
+ name: acc_norm
73
+ source:
74
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit
75
+ name: Open LLM Leaderboard
76
+ - task:
77
+ type: text-generation
78
+ name: Text Generation
79
+ dataset:
80
+ name: MuSR (0-shot)
81
+ type: TAUR-Lab/MuSR
82
+ args:
83
+ num_few_shot: 0
84
+ metrics:
85
+ - type: acc_norm
86
+ value: 8.3
87
+ name: acc_norm
88
+ source:
89
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit
90
+ name: Open LLM Leaderboard
91
+ - task:
92
+ type: text-generation
93
+ name: Text Generation
94
+ dataset:
95
+ name: MMLU-PRO (5-shot)
96
+ type: TIGER-Lab/MMLU-Pro
97
+ config: main
98
+ split: test
99
+ args:
100
+ num_few_shot: 5
101
+ metrics:
102
+ - type: acc
103
+ value: 28.5
104
+ name: accuracy
105
+ source:
106
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit
107
+ name: Open LLM Leaderboard
108
  ---
109
 
110
  **athirdpath/Llama-3.1-Instruct_NSFW-pretrained_e1** further pretrained on 1 epoch of the dirty stories from nothingiisreal/Reddit-Dirty-And-WritingPrompts, with all scores below 2 dropped.
 
113
 
114
  Why do this? I have a niche use case where I cannot increase compute over 8b, and L3/3.1 are the only models in this size category that meet my needs for logic. However, both versions of L3/3.1 have the damn repetition/token overconfidence problem, and this is meant to disrupt that certainty without disrupting the model's ability to function.
115
 
116
+ By the way, I *think* it's the lm_head that is causing the looping, but it might be the embeddings being too separated. I'm not going to pay two more times to test them separately, however :p
117
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
118
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_athirdpath__Llama-3.1-Instruct_NSFW-pretrained_e1-plus_reddit)
119
+
120
+ | Metric |Value|
121
+ |-------------------|----:|
122
+ |Avg. |20.74|
123
+ |IFEval (0-Shot) |45.21|
124
+ |BBH (3-Shot) |28.02|
125
+ |MATH Lvl 5 (4-Shot)| 8.84|
126
+ |GPQA (0-shot) | 5.59|
127
+ |MuSR (0-shot) | 8.30|
128
+ |MMLU-PRO (5-shot) |28.50|
129
+