asyafiqe commited on
Commit
7d0a716
1 Parent(s): 31830ec

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -0
README.md ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama2
3
+ datasets:
4
+ - psmathur/orca_mini_v1_dataset
5
+ language:
6
+ - en
7
+ - id
8
+ ---
9
+ ## 🦚Merak-7B-v3-Mini-Orca🐳
10
+
11
+ **Merak-7B-v3-Mini-Orca** is Ichsan2895's [Merak-7B-v3](https://huggingface.co/Ichsan2895/Merak-7B-v3) fine-tuned on psmathur's [orca_mini_v1_dataset](https://huggingface.co/datasets/psmathur/orca_mini_v1_dataset). Dataset was machine translated into Bahasa Indonesia with Google Translate.
12
+
13
+ [![Axolotl](https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png)](https://github.com/OpenAccess-AI-Collective/axolotl)
14
+ #### Training details
15
+ Merak-7B-v3-Mini-Orca was instruction fine-tuned on 2 x 3090-24GB for 6 hours. [LoRA](https://github.com/microsoft/LoRA), [DeepSpeed ZeRO-2](https://github.com/microsoft/DeepSpeed), and [FlashAttention](https://github.com/Dao-AILab/flash-attention) were implemented during training using [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl).
16
+ Hyperparameter | value |
17
+ | ------ | ------ |
18
+ learning rate | 0.0004 |
19
+ batch size | 16 |
20
+ microbatch size | 2 |
21
+ warmup step | 100 |
22
+ epochs | 2 |
23
+ weight decay | 0.0 |
24
+ lr scheduler | cosine |
25
+ lora alpha | 16 |
26
+ lora rank | 16 |
27
+ lora dropout | 0.05 |
28
+ lora target modules | q_proj, v_proj, k_proj, o_proj |
29
+ cutoff length | 4096 |
30
+ #### Training loss
31
+ Step |Train Loss
32
+ | ------ | ------ |
33
+ 1 |0.9578
34
+ 100 |0.816
35
+ 200 |0.7819
36
+ 300 |0.7279
37
+ 400 |0.732
38
+ 500 |0.7139
39
+ 600 |0.6829
40
+ 700 |0.6641
41
+ 800 |0.6553
42
+
43
+ #### Limitations and bias
44
+ Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.
45
+
46
+ Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/