metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- crows_pairs
metrics:
- accuracy
model-index:
- name: multiberts-seed_1_crows_pairs_classifieronly
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: crows_pairs
type: crows_pairs
config: crows_pairs
split: test
args: crows_pairs
metrics:
- name: Accuracy
type: accuracy
value: 0.5331125827814569
multiberts-seed_1_crows_pairs_classifieronly
This model is a fine-tuned version of google/multiberts-seed_1 on the crows_pairs dataset. It achieves the following results on the evaluation set:
- Loss: 0.6903
- Accuracy: 0.5331
- Tp: 0.3477
- Tn: 0.1854
- Fp: 0.3146
- Fn: 0.1523
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn |
---|---|---|---|---|---|---|---|---|
0.7016 | 1.05 | 20 | 0.6910 | 0.5364 | 0.4437 | 0.0927 | 0.4073 | 0.0563 |
0.7072 | 2.11 | 40 | 0.6914 | 0.5166 | 0.4834 | 0.0331 | 0.4669 | 0.0166 |
0.7003 | 3.16 | 60 | 0.6910 | 0.5497 | 0.0927 | 0.4570 | 0.0430 | 0.4073 |
0.7004 | 4.21 | 80 | 0.6908 | 0.5265 | 0.2583 | 0.2682 | 0.2318 | 0.2417 |
0.6985 | 5.26 | 100 | 0.6916 | 0.5033 | 0.0033 | 0.5 | 0.0 | 0.4967 |
0.7107 | 6.32 | 120 | 0.6909 | 0.5364 | 0.4603 | 0.0762 | 0.4238 | 0.0397 |
0.7135 | 7.37 | 140 | 0.6908 | 0.5364 | 0.4139 | 0.1225 | 0.3775 | 0.0861 |
0.7041 | 8.42 | 160 | 0.6908 | 0.5464 | 0.2848 | 0.2616 | 0.2384 | 0.2152 |
0.7022 | 9.47 | 180 | 0.6907 | 0.5298 | 0.2450 | 0.2848 | 0.2152 | 0.2550 |
0.6996 | 10.53 | 200 | 0.6908 | 0.5265 | 0.4371 | 0.0894 | 0.4106 | 0.0629 |
0.7049 | 11.58 | 220 | 0.6914 | 0.5066 | 0.0066 | 0.5 | 0.0 | 0.4934 |
0.6975 | 12.63 | 240 | 0.6912 | 0.5232 | 0.4834 | 0.0397 | 0.4603 | 0.0166 |
0.6967 | 13.68 | 260 | 0.6907 | 0.5497 | 0.2748 | 0.2748 | 0.2252 | 0.2252 |
0.705 | 14.74 | 280 | 0.6912 | 0.5132 | 0.0132 | 0.5 | 0.0 | 0.4868 |
0.6943 | 15.79 | 300 | 0.6909 | 0.5298 | 0.4768 | 0.0530 | 0.4470 | 0.0232 |
0.7057 | 16.84 | 320 | 0.6906 | 0.5364 | 0.4272 | 0.1093 | 0.3907 | 0.0728 |
0.6995 | 17.89 | 340 | 0.6905 | 0.5530 | 0.2252 | 0.3278 | 0.1722 | 0.2748 |
0.6989 | 18.95 | 360 | 0.6905 | 0.5464 | 0.1854 | 0.3609 | 0.1391 | 0.3146 |
0.7156 | 20.0 | 380 | 0.6912 | 0.5199 | 0.4834 | 0.0364 | 0.4636 | 0.0166 |
0.6957 | 21.05 | 400 | 0.6905 | 0.5497 | 0.2285 | 0.3212 | 0.1788 | 0.2715 |
0.6978 | 22.11 | 420 | 0.6906 | 0.5331 | 0.4371 | 0.0960 | 0.4040 | 0.0629 |
0.6988 | 23.16 | 440 | 0.6905 | 0.5331 | 0.3179 | 0.2152 | 0.2848 | 0.1821 |
0.7054 | 24.21 | 460 | 0.6905 | 0.5497 | 0.1623 | 0.3874 | 0.1126 | 0.3377 |
0.6997 | 25.26 | 480 | 0.6907 | 0.5166 | 0.4636 | 0.0530 | 0.4470 | 0.0364 |
0.7007 | 26.32 | 500 | 0.6904 | 0.5364 | 0.3940 | 0.1424 | 0.3576 | 0.1060 |
0.6973 | 27.37 | 520 | 0.6914 | 0.5 | 0.0 | 0.5 | 0.0 | 0.5 |
0.704 | 28.42 | 540 | 0.6905 | 0.5364 | 0.4338 | 0.1026 | 0.3974 | 0.0662 |
0.7028 | 29.47 | 560 | 0.6905 | 0.5530 | 0.1192 | 0.4338 | 0.0662 | 0.3808 |
0.6959 | 30.53 | 580 | 0.6905 | 0.5364 | 0.4404 | 0.0960 | 0.4040 | 0.0596 |
0.704 | 31.58 | 600 | 0.6904 | 0.5464 | 0.2583 | 0.2881 | 0.2119 | 0.2417 |
0.704 | 32.63 | 620 | 0.6903 | 0.5397 | 0.3146 | 0.2252 | 0.2748 | 0.1854 |
0.7003 | 33.68 | 640 | 0.6903 | 0.5430 | 0.3079 | 0.2351 | 0.2649 | 0.1921 |
0.7058 | 34.74 | 660 | 0.6903 | 0.5464 | 0.3079 | 0.2384 | 0.2616 | 0.1921 |
0.7095 | 35.79 | 680 | 0.6903 | 0.5430 | 0.2649 | 0.2781 | 0.2219 | 0.2351 |
0.7019 | 36.84 | 700 | 0.6905 | 0.5397 | 0.0695 | 0.4702 | 0.0298 | 0.4305 |
0.7167 | 37.89 | 720 | 0.6907 | 0.5099 | 0.0166 | 0.4934 | 0.0066 | 0.4834 |
0.6975 | 38.95 | 740 | 0.6903 | 0.5497 | 0.3113 | 0.2384 | 0.2616 | 0.1887 |
0.7036 | 40.0 | 760 | 0.6903 | 0.5397 | 0.3311 | 0.2086 | 0.2914 | 0.1689 |
0.7009 | 41.05 | 780 | 0.6903 | 0.5331 | 0.3940 | 0.1391 | 0.3609 | 0.1060 |
0.7004 | 42.11 | 800 | 0.6903 | 0.5430 | 0.2980 | 0.2450 | 0.2550 | 0.2020 |
0.699 | 43.16 | 820 | 0.6903 | 0.5430 | 0.2152 | 0.3278 | 0.1722 | 0.2848 |
0.6962 | 44.21 | 840 | 0.6903 | 0.5430 | 0.2980 | 0.2450 | 0.2550 | 0.2020 |
0.6981 | 45.26 | 860 | 0.6903 | 0.5397 | 0.3543 | 0.1854 | 0.3146 | 0.1457 |
0.7008 | 46.32 | 880 | 0.6903 | 0.5430 | 0.3808 | 0.1623 | 0.3377 | 0.1192 |
0.7048 | 47.37 | 900 | 0.6903 | 0.5530 | 0.3742 | 0.1788 | 0.3212 | 0.1258 |
0.707 | 48.42 | 920 | 0.6903 | 0.5497 | 0.3709 | 0.1788 | 0.3212 | 0.1291 |
0.7014 | 49.47 | 940 | 0.6903 | 0.5331 | 0.3477 | 0.1854 | 0.3146 | 0.1523 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1
- Datasets 2.10.1
- Tokenizers 0.13.2