Update README.md
Browse files
README.md
CHANGED
@@ -41,13 +41,14 @@ datasets:
|
|
41 |
<p style="margin-top: 0.5em; margin-bottom: 0em;"></p>
|
42 |
</div>
|
43 |
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
44 |
-
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.linkedin.com/in/david-xue-uva/">Quantized by David Xue
|
45 |
</div>
|
46 |
</div>
|
47 |
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">This model is generously created and made open source by <a href="https://astronomer.io">Astronomer</p></div>
|
48 |
-
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">Astronomer is the de
|
49 |
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
50 |
<!-- header end -->
|
|
|
51 |
# Important Note Regarding a Known Bug in Llama 3
|
52 |
- Two files are modified to address a current issue regarding Llama 3 models keep on generating additional tokens non-stop until hitting max token limit.
|
53 |
- `generation_config.json`'s `eos_token_id` have been modified to add the other EOS token that Llama-3 uses.
|
@@ -69,6 +70,9 @@ This repo contains 8 Bit quantized GPTQ model files for [meta-llama/Meta-Llama-3
|
|
69 |
<!-- description end -->
|
70 |
|
71 |
## GPTQ Quantization Method
|
|
|
|
|
|
|
72 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | VRAM Size | ExLlama | Desc |
|
73 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
74 |
| [main](https://huggingface.co/astronomer-io/Llama-3-8B-Instruct-GPTQ-8-Bit/tree/main) | 8 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 9.09 GB | No | 8-bit, with Act Order and group size 32g. Minimum accuracy loss with decent VRAM usage reduction. |
|
|
|
41 |
<p style="margin-top: 0.5em; margin-bottom: 0em;"></p>
|
42 |
</div>
|
43 |
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
44 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.linkedin.com/in/david-xue-uva/">Quantized by David Xue @ Astronomer</a></p>
|
45 |
</div>
|
46 |
</div>
|
47 |
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">This model is generously created and made open source by <a href="https://astronomer.io">Astronomer</p></div>
|
48 |
+
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">Astronomer is the de facto company for <a href="https://airflow.apache.org/">Apache Airflow</a>, the most trusted open-source framework for data orchestration and MLOps.</p></div>
|
49 |
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
50 |
<!-- header end -->
|
51 |
+
|
52 |
# Important Note Regarding a Known Bug in Llama 3
|
53 |
- Two files are modified to address a current issue regarding Llama 3 models keep on generating additional tokens non-stop until hitting max token limit.
|
54 |
- `generation_config.json`'s `eos_token_id` have been modified to add the other EOS token that Llama-3 uses.
|
|
|
70 |
<!-- description end -->
|
71 |
|
72 |
## GPTQ Quantization Method
|
73 |
+
- This model is quantized by utilizing the AutoGPTQ library, following best practices noted by [GPTQ paper](https://arxiv.org/abs/2210.17323)
|
74 |
+
- Quantization is calibration with random samples from the specified dataset (wikitext for now) for minimum accuracy loss.
|
75 |
+
|
76 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | VRAM Size | ExLlama | Desc |
|
77 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
78 |
| [main](https://huggingface.co/astronomer-io/Llama-3-8B-Instruct-GPTQ-8-Bit/tree/main) | 8 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 9.09 GB | No | 8-bit, with Act Order and group size 32g. Minimum accuracy loss with decent VRAM usage reduction. |
|