assamim commited on
Commit
b062665
1 Parent(s): 818746a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -46
README.md CHANGED
@@ -1,58 +1,48 @@
1
  ---
2
- license: apache-2.0
3
  tags:
4
  - generated_from_keras_callback
 
 
 
 
5
  model-index:
6
- - name: assamim/t5-small-english
7
  results: []
8
  ---
9
-
10
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
11
  probably proofread and complete it, then remove this comment. -->
12
-
13
- # assamim/t5-small-english
14
-
15
- This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
16
- It achieves the following results on the evaluation set:
17
- - Train Loss: 2.7206
18
- - Validation Loss: 2.4015
19
- - Train Rouge1: 29.5818
20
- - Train Rouge2: 7.8964
21
- - Train Rougel: 22.6985
22
- - Train Rougelsum: 22.7069
23
- - Train Gen Len: 18.84
24
- - Epoch: 0
25
-
26
- ## Model description
27
-
28
- More information needed
29
-
30
- ## Intended uses & limitations
31
-
32
- More information needed
33
-
34
- ## Training and evaluation data
35
-
36
- More information needed
37
-
38
- ## Training procedure
39
-
40
- ### Training hyperparameters
41
-
42
- The following hyperparameters were used during training:
43
- - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
44
- - training_precision: float32
45
-
46
- ### Training results
47
-
48
- | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch |
49
- |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:|
50
- | 2.7206 | 2.4015 | 29.5818 | 7.8964 | 22.6985 | 22.7069 | 18.84 | 0 |
51
-
52
-
53
  ### Framework versions
54
 
55
- - Transformers 4.19.3
56
  - TensorFlow 2.8.2
57
  - Datasets 2.2.2
58
- - Tokenizers 0.12.1
 
1
  ---
 
2
  tags:
3
  - generated_from_keras_callback
4
+ - Summarization
5
+ - T5-Small
6
+ datasets:
7
+ - Xsum
8
  model-index:
9
+ - name: assamim/mt5-pukulenam-summarization
10
  results: []
11
  ---
 
12
  <!-- This model card has been generated automatically according to the information Keras had access to. You should
13
  probably proofread and complete it, then remove this comment. -->
14
+ # assamim/mt5-pukulenam-summarization
15
+ This model is a fine-tuned version of [T5-Small](https://huggingface.co/t5-small) on an [XSUM](https://huggingface.co/datasets/xsum) dataset
16
+ ## Using this model in `transformers` (tested on 4.19.2)
17
+ ```python
18
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
19
+ import re
20
+ news = """
21
+ Anggota Unit Perlindungan Rakyat Kurdi di kota Rabia, pada perbatasan Irak-Suriah. Pasukan Kurdi Irak dilaporkan sudah menguasai kembali kota Rabia meskipun banyak korban jatuh. Pejabat senior Kurdi Irak mengatakan pasukan Kurdi Peshmerga mencatat kemajuan lewat serangan dini hari di Rabia. Sementara itu, milisi ISIS berusaha memukul mundur pasukan Kurdi Suriah di bagian lain perbatasan. Hal ini terjadi saat koalisi pimpinan Amerika terus melanjutkan serangan udara terhadap sasaran ISIS di Suriah dan Irak. Hari Selasa (30 September) dilaporkan juga terjadi serangkaian serangan bom di ibu kota Irak, Baghdad dan kota suci Syiah, Karbala. Dalam perkembangan terpisah, sejumlah tank Turki berada di bukit di sepanjang perbatasan dekat kota Kobane, Suriah setelah sejumlah bom mengenai wilayah Turki saat terjadi bentrokan dengan milisi ISIS dan pejuang Kurdi. Pemerintah Turki diperkirakan akan menyampaikan mosi ke parlemen, agar menyetujui aksi militer terhadap ISIS di Irak dan Suriah.
22
+ """
23
+ tokenizer = AutoTokenizer.from_pretrained("assamim/t5-small-english")
24
+ model = AutoModelForSeq2SeqLM.from_pretrained("assamim/t5-small-english", from_tf=True)
25
+ WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
26
+ input_ids = tokenizer.encode(WHITESPACE_HANDLER(news1), return_tensors='pt')
27
+ summary_ids = model.generate(input_ids,
28
+ min_length=20,
29
+ max_length=200,
30
+ num_beams=7,
31
+ repetition_penalty=2.5,
32
+ length_penalty=1.0,
33
+ early_stopping=True,
34
+ no_repeat_ngram_size=2,
35
+ use_cache=True,
36
+ do_sample = True,
37
+ temperature = 0.8,
38
+ top_k = 50,
39
+ top_p = 0.95)
40
+ summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
41
+ print(summary_text)
42
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
43
  ### Framework versions
44
 
45
+ - Transformers 4.19.2
46
  - TensorFlow 2.8.2
47
  - Datasets 2.2.2
48
+ - Tokenizers 0.12.1