metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xls-r-300m-lg-CV-Fleurs-100hrs-v10
results: []
wav2vec2-xls-r-300m-lg-CV-Fleurs-100hrs-v10
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6365
- Wer: 0.2931
- Cer: 0.0656
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.8123 | 0.9999 | 4598 | 0.4324 | 0.4954 | 0.1197 |
0.4178 | 2.0 | 9197 | 0.3691 | 0.4337 | 0.1018 |
0.3645 | 2.9999 | 13795 | 0.3475 | 0.4050 | 0.0953 |
0.3323 | 4.0 | 18394 | 0.3526 | 0.3988 | 0.0928 |
0.3081 | 4.9999 | 22992 | 0.3250 | 0.3959 | 0.0905 |
0.2869 | 6.0 | 27591 | 0.3213 | 0.3985 | 0.0920 |
0.2708 | 6.9999 | 32189 | 0.3122 | 0.3849 | 0.0877 |
0.2574 | 8.0 | 36788 | 0.3229 | 0.3790 | 0.0875 |
0.2424 | 8.9999 | 41386 | 0.3118 | 0.3654 | 0.0855 |
0.2311 | 10.0 | 45985 | 0.3190 | 0.3533 | 0.0830 |
0.2198 | 10.9999 | 50583 | 0.3085 | 0.3568 | 0.0831 |
0.2115 | 12.0 | 55182 | 0.3070 | 0.3592 | 0.0822 |
0.2027 | 12.9999 | 59780 | 0.3034 | 0.3586 | 0.0833 |
0.1934 | 14.0 | 64379 | 0.3135 | 0.3612 | 0.0824 |
0.1848 | 14.9999 | 68977 | 0.3126 | 0.3521 | 0.0803 |
0.1763 | 16.0 | 73576 | 0.3159 | 0.3577 | 0.0807 |
0.1693 | 16.9999 | 78174 | 0.3276 | 0.3602 | 0.0813 |
0.1626 | 18.0 | 82773 | 0.3286 | 0.3453 | 0.0804 |
0.156 | 18.9999 | 87371 | 0.3176 | 0.3476 | 0.0819 |
0.1488 | 20.0 | 91970 | 0.3171 | 0.3379 | 0.0782 |
0.1417 | 20.9999 | 96568 | 0.3363 | 0.3377 | 0.0769 |
0.1363 | 22.0 | 101167 | 0.3244 | 0.3484 | 0.0790 |
0.1307 | 22.9999 | 105765 | 0.3232 | 0.3336 | 0.0769 |
0.1244 | 24.0 | 110364 | 0.3464 | 0.3400 | 0.0776 |
0.1198 | 24.9999 | 114962 | 0.3575 | 0.3364 | 0.0760 |
0.1154 | 26.0 | 119561 | 0.3416 | 0.3421 | 0.0785 |
0.1113 | 26.9999 | 124159 | 0.3718 | 0.3414 | 0.0789 |
0.1075 | 28.0 | 128758 | 0.3571 | 0.3384 | 0.0760 |
0.1037 | 28.9999 | 133356 | 0.3716 | 0.3409 | 0.0781 |
0.1016 | 30.0 | 137955 | 0.3909 | 0.3414 | 0.0768 |
0.0976 | 30.9999 | 142553 | 0.3745 | 0.3383 | 0.0760 |
0.0946 | 32.0 | 147152 | 0.4116 | 0.3380 | 0.0775 |
0.0913 | 32.9999 | 151750 | 0.3901 | 0.3319 | 0.0759 |
0.0881 | 34.0 | 156349 | 0.3900 | 0.3401 | 0.0762 |
0.0853 | 34.9999 | 160947 | 0.4045 | 0.3300 | 0.0749 |
0.0828 | 36.0 | 165546 | 0.4353 | 0.3320 | 0.0760 |
0.0805 | 36.9999 | 170144 | 0.4063 | 0.3356 | 0.0770 |
0.0789 | 38.0 | 174743 | 0.4147 | 0.3272 | 0.0757 |
0.0769 | 38.9999 | 179341 | 0.4324 | 0.3215 | 0.0744 |
0.0744 | 40.0 | 183940 | 0.4317 | 0.3433 | 0.0759 |
0.072 | 40.9999 | 188538 | 0.4173 | 0.3273 | 0.0748 |
0.0706 | 42.0 | 193137 | 0.4326 | 0.3283 | 0.0749 |
0.0681 | 42.9999 | 197735 | 0.4483 | 0.3212 | 0.0738 |
0.0671 | 44.0 | 202334 | 0.4612 | 0.3296 | 0.0750 |
0.0648 | 44.9999 | 206932 | 0.4639 | 0.3244 | 0.0747 |
0.0634 | 46.0 | 211531 | 0.4635 | 0.3247 | 0.0736 |
0.0609 | 46.9999 | 216129 | 0.4613 | 0.3184 | 0.0731 |
0.0598 | 48.0 | 220728 | 0.4987 | 0.3308 | 0.0739 |
0.059 | 48.9999 | 225326 | 0.4680 | 0.3237 | 0.0730 |
0.0585 | 50.0 | 229925 | 0.4722 | 0.3265 | 0.0737 |
0.0565 | 50.9999 | 234523 | 0.4736 | 0.3160 | 0.0724 |
0.0548 | 52.0 | 239122 | 0.4904 | 0.3226 | 0.0725 |
0.0533 | 52.9999 | 243720 | 0.5052 | 0.3189 | 0.0721 |
0.0522 | 54.0 | 248319 | 0.4949 | 0.3169 | 0.0713 |
0.0516 | 54.9999 | 252917 | 0.4909 | 0.3132 | 0.0713 |
0.0498 | 56.0 | 257516 | 0.5333 | 0.3131 | 0.0708 |
0.0484 | 56.9999 | 262114 | 0.5058 | 0.3182 | 0.0718 |
0.048 | 58.0 | 266713 | 0.5239 | 0.3180 | 0.0721 |
0.0466 | 58.9999 | 271311 | 0.4904 | 0.3157 | 0.0717 |
0.0458 | 60.0 | 275910 | 0.5162 | 0.3148 | 0.0708 |
0.0446 | 60.9999 | 280508 | 0.4864 | 0.3154 | 0.0703 |
0.0435 | 62.0 | 285107 | 0.5206 | 0.3157 | 0.0707 |
0.0427 | 62.9999 | 289705 | 0.5272 | 0.3092 | 0.0699 |
0.042 | 64.0 | 294304 | 0.5192 | 0.3160 | 0.0706 |
0.0405 | 64.9999 | 298902 | 0.5194 | 0.3070 | 0.0691 |
0.0401 | 66.0 | 303501 | 0.5382 | 0.3144 | 0.0707 |
0.0387 | 66.9999 | 308099 | 0.5159 | 0.3069 | 0.0692 |
0.0385 | 68.0 | 312698 | 0.5353 | 0.3138 | 0.0708 |
0.0374 | 68.9999 | 317296 | 0.4952 | 0.3070 | 0.0696 |
0.0368 | 70.0 | 321895 | 0.5551 | 0.3076 | 0.0691 |
0.0358 | 70.9999 | 326493 | 0.5521 | 0.3083 | 0.0690 |
0.0347 | 72.0 | 331092 | 0.5671 | 0.3054 | 0.0686 |
0.0336 | 72.9999 | 335690 | 0.5652 | 0.3028 | 0.0691 |
0.0327 | 74.0 | 340289 | 0.5574 | 0.3027 | 0.0688 |
0.0321 | 74.9999 | 344887 | 0.5515 | 0.2998 | 0.0678 |
0.0313 | 76.0 | 349486 | 0.5528 | 0.3015 | 0.0681 |
0.0307 | 76.9999 | 354084 | 0.5727 | 0.3008 | 0.0677 |
0.0302 | 78.0 | 358683 | 0.5684 | 0.3017 | 0.0677 |
0.03 | 78.9999 | 363281 | 0.5654 | 0.3028 | 0.0679 |
0.0285 | 80.0 | 367880 | 0.5822 | 0.3049 | 0.0678 |
0.0282 | 80.9999 | 372478 | 0.5999 | 0.3042 | 0.0676 |
0.0275 | 82.0 | 377077 | 0.5716 | 0.3048 | 0.0679 |
0.027 | 82.9999 | 381675 | 0.6061 | 0.2974 | 0.0673 |
0.0261 | 84.0 | 386274 | 0.5713 | 0.3069 | 0.0681 |
0.0252 | 84.9999 | 390872 | 0.6035 | 0.3054 | 0.0681 |
0.0248 | 86.0 | 395471 | 0.6045 | 0.2998 | 0.0675 |
0.0238 | 86.9999 | 400069 | 0.6126 | 0.3003 | 0.0678 |
0.0239 | 88.0 | 404668 | 0.6153 | 0.2965 | 0.0665 |
0.0235 | 88.9999 | 409266 | 0.6171 | 0.2966 | 0.0667 |
0.0227 | 90.0 | 413865 | 0.6168 | 0.2967 | 0.0665 |
0.0219 | 90.9999 | 418463 | 0.6202 | 0.2948 | 0.0663 |
0.0222 | 92.0 | 423062 | 0.6212 | 0.2935 | 0.0660 |
0.0215 | 92.9999 | 427660 | 0.6165 | 0.2937 | 0.0660 |
0.0208 | 94.0 | 432259 | 0.6102 | 0.2952 | 0.0661 |
0.0204 | 94.9999 | 436857 | 0.6251 | 0.2932 | 0.0659 |
0.0204 | 96.0 | 441456 | 0.6254 | 0.2923 | 0.0657 |
0.0193 | 96.9999 | 446054 | 0.6297 | 0.2939 | 0.0658 |
0.0195 | 98.0 | 450653 | 0.6331 | 0.2939 | 0.0657 |
0.0193 | 98.9999 | 455251 | 0.6314 | 0.2933 | 0.0657 |
0.0189 | 99.9891 | 459800 | 0.6365 | 0.2931 | 0.0656 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3