End of training
Browse files- README.md +110 -195
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,199 +1,114 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
language:
|
4 |
+
- lg
|
5 |
+
license: mit
|
6 |
+
base_model: facebook/w2v-bert-2.0
|
7 |
+
tags:
|
8 |
+
- generated_from_trainer
|
9 |
+
datasets:
|
10 |
+
- yogera
|
11 |
+
metrics:
|
12 |
+
- wer
|
13 |
+
model-index:
|
14 |
+
- name: wav2vec2-bert
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Automatic Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Yogera
|
21 |
+
type: yogera
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.12906588824020016
|
26 |
---
|
27 |
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# wav2vec2-bert
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Yogera dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.2157
|
36 |
+
- Wer: 0.1291
|
37 |
+
- Cer: 0.0296
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 16
|
58 |
+
- eval_batch_size: 8
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- num_epochs: 100
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
69 |
+
| 0.6428 | 1.0 | 257 | 0.1958 | 0.2392 | 0.0488 |
|
70 |
+
| 0.1608 | 2.0 | 514 | 0.1623 | 0.1868 | 0.0393 |
|
71 |
+
| 0.1216 | 3.0 | 771 | 0.1471 | 0.1663 | 0.0368 |
|
72 |
+
| 0.1001 | 4.0 | 1028 | 0.1483 | 0.1601 | 0.0351 |
|
73 |
+
| 0.0859 | 5.0 | 1285 | 0.1471 | 0.1497 | 0.0332 |
|
74 |
+
| 0.0742 | 6.0 | 1542 | 0.1478 | 0.1468 | 0.0315 |
|
75 |
+
| 0.0641 | 7.0 | 1799 | 0.1642 | 0.1476 | 0.0326 |
|
76 |
+
| 0.0544 | 8.0 | 2056 | 0.1520 | 0.1461 | 0.0322 |
|
77 |
+
| 0.0489 | 9.0 | 2313 | 0.1596 | 0.1386 | 0.0312 |
|
78 |
+
| 0.0452 | 10.0 | 2570 | 0.1521 | 0.1408 | 0.0320 |
|
79 |
+
| 0.04 | 11.0 | 2827 | 0.1754 | 0.1395 | 0.0306 |
|
80 |
+
| 0.0371 | 12.0 | 3084 | 0.1703 | 0.1405 | 0.0309 |
|
81 |
+
| 0.0329 | 13.0 | 3341 | 0.1657 | 0.1447 | 0.0318 |
|
82 |
+
| 0.0323 | 14.0 | 3598 | 0.1695 | 0.1327 | 0.0298 |
|
83 |
+
| 0.0282 | 15.0 | 3855 | 0.1852 | 0.1356 | 0.0310 |
|
84 |
+
| 0.0237 | 16.0 | 4112 | 0.1728 | 0.1399 | 0.0308 |
|
85 |
+
| 0.0229 | 17.0 | 4369 | 0.1810 | 0.1301 | 0.0291 |
|
86 |
+
| 0.02 | 18.0 | 4626 | 0.1781 | 0.1367 | 0.0304 |
|
87 |
+
| 0.0204 | 19.0 | 4883 | 0.2039 | 0.1329 | 0.0293 |
|
88 |
+
| 0.0186 | 20.0 | 5140 | 0.1929 | 0.1366 | 0.0302 |
|
89 |
+
| 0.0164 | 21.0 | 5397 | 0.2022 | 0.1356 | 0.0301 |
|
90 |
+
| 0.0154 | 22.0 | 5654 | 0.1787 | 0.1307 | 0.0293 |
|
91 |
+
| 0.0127 | 23.0 | 5911 | 0.2086 | 0.1296 | 0.0290 |
|
92 |
+
| 0.0129 | 24.0 | 6168 | 0.2094 | 0.1281 | 0.0287 |
|
93 |
+
| 0.0108 | 25.0 | 6425 | 0.2148 | 0.1254 | 0.0280 |
|
94 |
+
| 0.0122 | 26.0 | 6682 | 0.2091 | 0.1339 | 0.0305 |
|
95 |
+
| 0.0106 | 27.0 | 6939 | 0.2030 | 0.1315 | 0.0295 |
|
96 |
+
| 0.0102 | 28.0 | 7196 | 0.2092 | 0.1241 | 0.0282 |
|
97 |
+
| 0.0088 | 29.0 | 7453 | 0.2078 | 0.1290 | 0.0287 |
|
98 |
+
| 0.008 | 30.0 | 7710 | 0.2112 | 0.1298 | 0.0282 |
|
99 |
+
| 0.0084 | 31.0 | 7967 | 0.1972 | 0.1305 | 0.0295 |
|
100 |
+
| 0.0074 | 32.0 | 8224 | 0.2130 | 0.1337 | 0.0293 |
|
101 |
+
| 0.0062 | 33.0 | 8481 | 0.2141 | 0.1308 | 0.0297 |
|
102 |
+
| 0.0065 | 34.0 | 8738 | 0.2151 | 0.1319 | 0.0296 |
|
103 |
+
| 0.0079 | 35.0 | 8995 | 0.2070 | 0.1253 | 0.0279 |
|
104 |
+
| 0.0059 | 36.0 | 9252 | 0.2229 | 0.1267 | 0.0285 |
|
105 |
+
| 0.0071 | 37.0 | 9509 | 0.2218 | 0.1295 | 0.0297 |
|
106 |
+
| 0.0066 | 38.0 | 9766 | 0.2157 | 0.1291 | 0.0296 |
|
107 |
+
|
108 |
+
|
109 |
+
### Framework versions
|
110 |
+
|
111 |
+
- Transformers 4.45.2
|
112 |
+
- Pytorch 2.1.0+cu118
|
113 |
+
- Datasets 3.0.1
|
114 |
+
- Tokenizers 0.20.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2422966260
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbd4a5cc57e63fd2577f15aee19db9a6563015c0e105b53cc74df2194a8178e6
|
3 |
size 2422966260
|