dmusingu's picture
End of training
ce62852 verified
metadata
library_name: transformers
language:
  - wo
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - Google/Fleurs
metrics:
  - wer
model-index:
  - name: Whisper-WOLOF-10-hours-Google-Fleurs-dataset
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Wolof Google Fleurs
          type: Google/Fleurs
          config: wo_sn
          split: None
          args: 'config: wo_sn, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 44.91918164349497

Visualize in Weights & Biases

Whisper-WOLOF-10-hours-Google-Fleurs-dataset

This model is a fine-tuned version of openai/whisper-small on the Wolof Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4961
  • Wer: 44.9192
  • Cer: 16.7830

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.1589 6.4935 500 1.0397 46.6260 18.8906
0.0602 12.9870 1000 1.2600 46.1173 17.4588
0.0042 19.4805 1500 1.3654 44.8401 16.6024
0.0013 25.9740 2000 1.4186 44.7383 16.5644
0.0007 32.4675 2500 1.4569 45.2922 17.2179
0.0006 38.9610 3000 1.4812 44.9531 16.6603
0.0005 45.4545 3500 1.4961 44.9192 16.7830

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.1
  • Tokenizers 0.20.1