metadata
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: W2V2-Bert_DigitalUmuganda_Afrivoice_Shona_5hr_v1
results: []
W2V2-Bert_DigitalUmuganda_Afrivoice_Shona_5hr_v1
This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5836
- Wer: 0.3300
- Cer: 0.0669
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
4.2445 | 1.0 | 110 | 2.8442 | 1.0 | 0.9853 |
1.099 | 2.0 | 220 | 0.2941 | 0.3722 | 0.0597 |
0.2699 | 3.0 | 330 | 0.2436 | 0.2851 | 0.0489 |
0.2172 | 4.0 | 440 | 0.2659 | 0.3090 | 0.0562 |
0.1991 | 5.0 | 550 | 0.2614 | 0.3125 | 0.0542 |
0.1848 | 6.0 | 660 | 0.2632 | 0.2933 | 0.0506 |
0.1544 | 7.0 | 770 | 0.2559 | 0.2831 | 0.0517 |
0.1371 | 8.0 | 880 | 0.2605 | 0.2746 | 0.0485 |
0.118 | 9.0 | 990 | 0.2669 | 0.3128 | 0.0502 |
0.0982 | 10.0 | 1100 | 0.2901 | 0.3135 | 0.0506 |
0.0832 | 11.0 | 1210 | 0.2899 | 0.2728 | 0.0477 |
0.0726 | 12.0 | 1320 | 0.2902 | 0.2791 | 0.0479 |
0.0619 | 13.0 | 1430 | 0.3287 | 0.2893 | 0.0477 |
0.0479 | 14.0 | 1540 | 0.3254 | 0.2664 | 0.0462 |
0.0405 | 15.0 | 1650 | 0.3244 | 0.3025 | 0.0473 |
0.0311 | 16.0 | 1760 | 0.3584 | 0.2753 | 0.0460 |
0.0279 | 17.0 | 1870 | 0.3913 | 0.2748 | 0.0474 |
0.0242 | 18.0 | 1980 | 0.3918 | 0.2678 | 0.0445 |
0.0235 | 19.0 | 2090 | 0.3669 | 0.2761 | 0.0475 |
0.0213 | 20.0 | 2200 | 0.3855 | 0.2631 | 0.0460 |
0.016 | 21.0 | 2310 | 0.4096 | 0.2748 | 0.0475 |
0.0154 | 22.0 | 2420 | 0.4276 | 0.2916 | 0.0488 |
0.0127 | 23.0 | 2530 | 0.3918 | 0.2649 | 0.0452 |
0.0115 | 24.0 | 2640 | 0.4195 | 0.2778 | 0.0472 |
0.0105 | 25.0 | 2750 | 0.4143 | 0.2726 | 0.0463 |
0.0086 | 26.0 | 2860 | 0.3923 | 0.2748 | 0.0468 |
0.0111 | 27.0 | 2970 | 0.4108 | 0.2708 | 0.0461 |
0.0107 | 28.0 | 3080 | 0.4169 | 0.2698 | 0.0469 |
0.0083 | 29.0 | 3190 | 0.4363 | 0.2659 | 0.0448 |
0.0085 | 30.0 | 3300 | 0.4340 | 0.2649 | 0.0459 |
Framework versions
- Transformers 4.44.1
- Pytorch 2.2.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1