metadata
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
transformers_issues_topics
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("asoria/transformers_issues_topics")
topic_model.get_topic_info()
Topic overview
- Number of topics: 30
- Number of training documents: 9000
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | pytorch - tensorflow - bert - tf - pretrained | 15 | -1_pytorch_tensorflow_bert_tf |
0 | bert - bertforsequenceclassification - berttokenizer - bart - batchencodeplus | 2321 | 0_bert_bertforsequenceclassification_berttokenizer_bart |
1 | cuda - memory - trainertrain - tensorflow - trainer | 1554 | 1_cuda_memory_trainertrain_tensorflow |
2 | transformerscli - transformers - transformer - importerror - transformerxl | 882 | 2_transformerscli_transformers_transformer_importerror |
3 | modelcard - modelcards - card - model - models | 490 | 3_modelcard_modelcards_card_model |
4 | gpt2 - gpt2tokenizer - gpt2xl - gpt2tokenizerfast - gpt2model | 462 | 4_gpt2_gpt2tokenizer_gpt2xl_gpt2tokenizerfast |
5 | attributeerror - typeerror - valueerror - runtimeerror - indexerror | 437 | 5_attributeerror_typeerror_valueerror_runtimeerror |
6 | typos - typo - doc - docstring - fix | 336 | 6_typos_typo_doc_docstring |
7 | t5 - t5model - t5base - tf - t5large | 298 | 7_t5_t5model_t5base_tf |
8 | readmemd - readmetxt - readme - modelcard - file | 270 | 8_readmemd_readmetxt_readme_modelcard |
9 | ci - testing - tests - test - speedup | 254 | 9_ci_testing_tests_test |
10 | s2s - s2sdistill - s2t - s2strainer - exampless2s | 245 | 10_s2s_s2sdistill_s2t_s2strainer |
11 | glue - gluepy - glueconvertexamplestofeatures - roberta - huggingfacetransformers | 214 | 11_glue_gluepy_glueconvertexamplestofeatures_roberta |
12 | ner - pipeline - pipelines - nerpipeline - fillmaskpipeline | 158 | 12_ner_pipeline_pipelines_nerpipeline |
13 | rag - ragtokenforgeneration - ragsequenceforgeneration - clean - tests | 153 | 13_rag_ragtokenforgeneration_ragsequenceforgeneration_clean |
14 | questionansweringpipeline - questionanswering - answering - tfalbertforquestionanswering - questionasnwering | 143 | 14_questionansweringpipeline_questionanswering_answering_tfalbertforquestionanswering |
15 | onnx - 04onnxexport - 04onnxexportipynb - aionnx - sphynx | 131 | 15_onnx_04onnxexport_04onnxexportipynb_aionnx |
16 | longformer - longformers - longform - longformerlayer - longformermodel | 104 | 16_longformer_longformers_longform_longformerlayer |
17 | labelsmoothednllloss - label - labelsmoothingfactor - labels - labelsmoothing | 76 | 17_labelsmoothednllloss_label_labelsmoothingfactor_labels |
18 | benchmark - benchmarking - benchmarks - accuracy - evaluation | 73 | 18_benchmark_benchmarking_benchmarks_accuracy |
19 | wav2vec2 - wav2vec - wav2vec20 - wav2vec2forctc - wav2vec2xlrswav2vec2 | 67 | 19_wav2vec2_wav2vec_wav2vec20_wav2vec2forctc |
20 | flax - flaxelectraformaskedlm - flaxelectraforpretraining - flaxjax - flaxelectramodel | 51 | 20_flax_flaxelectraformaskedlm_flaxelectraforpretraining_flaxjax |
21 | configpath - configs - config - configuration - modelconfigs | 49 | 21_configpath_configs_config_configuration |
22 | logging - logs - log - logger - loghistory | 40 | 22_logging_logs_log_logger |
23 | cachedir - cache - cachedpath - caching - cached | 38 | 23_cachedir_cache_cachedpath_caching |
24 | wandbproject - wandb - sagemaker - sagemakertrainer - wandbcallback | 36 | 24_wandbproject_wandb_sagemaker_sagemakertrainer |
25 | notebook - notebooks - community - colab - t5 | 33 | 25_notebook_notebooks_community_colab |
26 | electra - electrapretrainedmodel - electraformaskedlm - electraformultiplechoice - electrafortokenclassification | 30 | 26_electra_electrapretrainedmodel_electraformaskedlm_electraformultiplechoice |
27 | layoutlm - layout - layoutlmtokenizer - layoutlmbaseuncased - tf | 25 | 27_layoutlm_layout_layoutlmtokenizer_layoutlmbaseuncased |
28 | pplm - pr - deprecated - variable - ppl | 15 | 28_pplm_pr_deprecated_variable |
Training hyperparameters
- calculate_probabilities: False
- language: english
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: 30
- seed_topic_list: None
- top_n_words: 10
- verbose: True
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 1.26.4
- HDBSCAN: 0.8.38.post1
- UMAP: 0.5.6
- Pandas: 2.1.4
- Scikit-Learn: 1.5.2
- Sentence-transformers: 3.1.1
- Transformers: 4.44.2
- Numba: 0.60.0
- Plotly: 5.24.1
- Python: 3.10.12