metadata
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: model_indicbert_small
results: []
model_indicbert_small
This model is a fine-tuned version of ai4bharat/indic-bert on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0999
- Precision: 0.9203
- Recall: 0.9141
- F1: 0.9172
- Accuracy: 0.9672
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1412 | 1.0 | 17611 | 0.1358 | 0.8961 | 0.8834 | 0.8897 | 0.9555 |
0.1024 | 2.0 | 35222 | 0.1076 | 0.9133 | 0.9076 | 0.9104 | 0.9641 |
0.076 | 3.0 | 52833 | 0.0999 | 0.9203 | 0.9141 | 0.9172 | 0.9672 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3