|
# Fine-tuning BART on GLUE tasks |
|
|
|
### 1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands: |
|
```bash |
|
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py |
|
python download_glue_data.py --data_dir glue_data --tasks all |
|
``` |
|
|
|
### 2) Preprocess GLUE task data (same as RoBERTa): |
|
```bash |
|
./examples/roberta/preprocess_GLUE_tasks.sh glue_data <glue_task_name> |
|
``` |
|
`glue_task_name` is one of the following: |
|
`{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}` |
|
Use `ALL` for preprocessing all the glue tasks. |
|
|
|
### 3) Fine-tuning on GLUE task: |
|
Example fine-tuning cmd for `RTE` task |
|
```bash |
|
TOTAL_NUM_UPDATES=2036 # 10 epochs through RTE for bsz 16 |
|
WARMUP_UPDATES=61 # 6 percent of the number of updates |
|
LR=1e-05 # Peak LR for polynomial LR scheduler. |
|
NUM_CLASSES=2 |
|
MAX_SENTENCES=16 # Batch size. |
|
BART_PATH=/path/to/bart/model.pt |
|
|
|
CUDA_VISIBLE_DEVICES=0,1 fairseq-train RTE-bin/ \ |
|
--restore-file $BART_PATH \ |
|
--batch-size $MAX_SENTENCES \ |
|
--max-tokens 4400 \ |
|
--task sentence_prediction \ |
|
--add-prev-output-tokens \ |
|
--layernorm-embedding \ |
|
--share-all-embeddings \ |
|
--share-decoder-input-output-embed \ |
|
--reset-optimizer --reset-dataloader --reset-meters \ |
|
--required-batch-size-multiple 1 \ |
|
--init-token 0 \ |
|
--arch bart_large \ |
|
--criterion sentence_prediction \ |
|
--num-classes $NUM_CLASSES \ |
|
--dropout 0.1 --attention-dropout 0.1 \ |
|
--weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 \ |
|
--clip-norm 0.0 \ |
|
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \ |
|
--fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ |
|
--max-epoch 10 \ |
|
--find-unused-parameters \ |
|
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric; |
|
``` |
|
|
|
For each of the GLUE task, you will need to use following cmd-line arguments: |
|
|
|
Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B |
|
---|---|---|---|---|---|---|---|--- |
|
`--num-classes` | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
|
`--lr` | 5e-6 | 1e-5 | 1e-5 | 1e-5 | 5e-6 | 2e-5 | 2e-5 | 2e-5 |
|
`bsz` | 128 | 32 | 32 | 32 | 128 | 64 | 64 | 32 |
|
`--total-num-update` | 30968 | 33112 | 113272 | 1018 | 5233 | 1148 | 1334 | 1799 |
|
`--warmup-updates` | 1858 | 1986 | 6796 | 61 | 314 | 68 | 80 | 107 |
|
|
|
For `STS-B` additionally add `--regression-target --best-checkpoint-metric loss` and remove `--maximize-best-checkpoint-metric`. |
|
|
|
**Note:** |
|
|
|
a) `--total-num-updates` is used by `--polynomial_decay` scheduler and is calculated for `--max-epoch=10` and `--batch-size=32/64/128` depending on the task. |
|
|
|
b) Above cmd-args and hyperparams are tested on Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--batch-size`. |
|
|
|
### Inference on GLUE task |
|
After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using following python code snippet: |
|
|
|
```python |
|
from fairseq.models.bart import BARTModel |
|
|
|
bart = BARTModel.from_pretrained( |
|
'checkpoints/', |
|
checkpoint_file='checkpoint_best.pt', |
|
data_name_or_path='RTE-bin' |
|
) |
|
|
|
label_fn = lambda label: bart.task.label_dictionary.string( |
|
[label + bart.task.label_dictionary.nspecial] |
|
) |
|
ncorrect, nsamples = 0, 0 |
|
bart.cuda() |
|
bart.eval() |
|
with open('glue_data/RTE/dev.tsv') as fin: |
|
fin.readline() |
|
for index, line in enumerate(fin): |
|
tokens = line.strip().split('\t') |
|
sent1, sent2, target = tokens[1], tokens[2], tokens[3] |
|
tokens = bart.encode(sent1, sent2) |
|
prediction = bart.predict('sentence_classification_head', tokens).argmax().item() |
|
prediction_label = label_fn(prediction) |
|
ncorrect += int(prediction_label == target) |
|
nsamples += 1 |
|
print('| Accuracy: ', float(ncorrect)/float(nsamples)) |
|
``` |
|
|