metadata
language:
- zh
base_model:
- JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW
pipeline_tag: automatic-speech-recognition
tags:
- audio
- automatic-speech-recognition
library_name: ctranslate2
asadfgglie/faster-whisper-large-v3-zh-TW
此模型是將JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW
轉換成CTranslate2
格式的模型,可以在faster-whisper中使用。
Example
from faster_whisper import WhisperModel
model = WhisperModel("asadfgglie/faster-whisper-large-v3-zh-TW")
segments, info = model.transcribe("audio.mp3")
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
Conversion details
原始模型是根據以下指令轉換:
ct2-transformers-converter --output_dir faster-whisper-large-v3-zh-TW \
--model JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW \
--copy_files preprocessor_config.json
在轉換完成後,請記得自行到原始模型的model card中下載tokenizer.json
。
(因為JacobLinCool/whisper-large-v3-turbo-common_voice_19_0-zh-TW
的repo中沒有,而faster_whishper
又需要這個酷東東來做tokenizer)
如果有需要,你可以在轉換指令中添加--quantization float16
來指定量化精度。不過在推理時你依舊可以使用compute_type
參數來進一步量化/去除量化。