whisper-small-zh-1 / README.md
arun100's picture
End of training
5266760 verified
metadata
language:
  - zh
license: apache-2.0
base_model: openai/whisper-small
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Whisper Small Chinese-Mandarin
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_0 zh-CN
          type: mozilla-foundation/common_voice_16_0
          config: zh-CN
          split: test
          args: zh-CN
        metrics:
          - name: Wer
            type: wer
            value: 77.85993910395824

Whisper Small Chinese-Mandarin

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_16_0 zh-CN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3738
  • Wer: 77.8599

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7234 1.06 500 0.4390 82.2706
0.5601 3.0 1000 0.3994 80.4089
0.6714 4.06 1500 0.3857 79.6694
0.4956 6.0 2000 0.3784 78.1383
0.6296 7.06 2500 0.3751 78.4863
0.4632 9.0 3000 0.3738 77.8599

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0