metadata
license: apache-2.0
base_model: arun100/whisper-small-uk-1
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: arun100/whisper-small-uk-1
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: uk_ua
split: test
args: uk_ua
metrics:
- name: Wer
type: wer
value: 19.491997216423105
arun100/whisper-small-uk-1
This model is a fine-tuned version of arun100/whisper-small-uk-1 on the fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 0.3297
- Wer: 19.4920
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0191 | 95.0 | 1000 | 0.2881 | 18.6848 |
0.0061 | 190.0 | 2000 | 0.3058 | 18.8935 |
0.0035 | 285.0 | 3000 | 0.3179 | 19.2276 |
0.0025 | 380.0 | 4000 | 0.3263 | 19.4502 |
0.0022 | 476.0 | 5000 | 0.3297 | 19.4920 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.0