whisper-medium-vi-2 / README.md
arun100's picture
update model card README.md
2dd36eb
metadata
language:
  - vi
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Vietnamese
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 vi
          type: mozilla-foundation/common_voice_11_0
          config: vi
          split: test
          args: vi
        metrics:
          - name: Wer
            type: wer
            value: 18.863785917964464

Whisper Medium Vietnamese

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 vi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5686
  • Wer: 18.8638

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0063 12.01 200 0.5238 19.2915
0.0046 24.01 400 0.5686 18.8638
0.0067 37.01 600 0.5924 20.6076
0.0004 49.01 800 0.6239 19.8070
0.0005 62.01 1000 0.6354 19.7631
0.0001 74.01 1200 0.6447 19.5547
0.0001 87.01 1400 0.6473 19.5547

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.1.dev0
  • Tokenizers 0.13.2