whisper-base-uk-2 / README.md
arun100's picture
End of training
157382f verified
metadata
license: apache-2.0
base_model: arun100/whisper-base-uk-1
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Base Ukrainian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs uk_ua
          type: google/fleurs
          config: uk_ua
          split: test
          args: uk_ua
        metrics:
          - name: Wer
            type: wer
            value: 33.562978427279056

Whisper Base Ukrainian

This model is a fine-tuned version of arun100/whisper-base-uk-1 on the google/fleurs uk_ua dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4710
  • Wer: 33.5630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-07
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2683 95.0 1000 0.4710 33.5630
0.142 190.0 2000 0.4714 33.8344
0.0871 285.0 3000 0.4782 33.9596
0.0656 380.0 4000 0.4830 33.7230
0.0595 476.0 5000 0.4847 33.7161

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0