whisper-base-id-2 / README.md
arun100's picture
End of training
7e57946 verified
metadata
license: apache-2.0
base_model: arun100/whisper-base-id-1
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Base Indonesian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs id_id
          type: google/fleurs
          config: id_id
          split: test
          args: id_id
        metrics:
          - name: Wer
            type: wer
            value: 26.74778761061947

Whisper Base Indonesian

This model is a fine-tuned version of arun100/whisper-base-id-1 on the google/fleurs id_id dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5254
  • Wer: 26.7478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3799 45.0 500 0.5510 28.5103
0.1679 90.0 1000 0.5254 26.7478
0.0785 136.0 1500 0.5336 27.1386
0.0408 181.0 2000 0.5439 27.1755
0.0266 227.0 2500 0.5513 27.0354
0.02 272.0 3000 0.5569 28.0826
0.0159 318.0 3500 0.5612 28.5767
0.0136 363.0 4000 0.5645 30.1254
0.0124 409.0 4500 0.5667 28.7611
0.012 454.0 5000 0.5674 28.7021

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0