whisper-base-cn-1 / README.md
arun100's picture
End of training
7795c52 verified
---
language:
- zh
license: apache-2.0
base_model: openai/whisper-base
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_0
metrics:
- wer
model-index:
- name: Whisper Base Chinese-Mandarin
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_16_0 zh-CN
type: mozilla-foundation/common_voice_16_0
config: zh-CN
split: test
args: zh-CN
metrics:
- name: Wer
type: wer
value: 89.13440626359287
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base Chinese-Mandarin
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_16_0 zh-CN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5263
- Wer: 89.1344
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.9769 | 1.02 | 500 | 0.6812 | 94.6411 |
| 0.8022 | 3.0 | 1000 | 0.6262 | 92.5794 |
| 0.9109 | 4.02 | 1500 | 0.6009 | 92.6229 |
| 0.7132 | 6.0 | 2000 | 0.5845 | 92.3967 |
| 0.8416 | 7.02 | 2500 | 0.5725 | 91.7616 |
| 0.6527 | 9.0 | 3000 | 0.5636 | 91.4659 |
| 0.812 | 10.02 | 3500 | 0.5561 | 90.8917 |
| 0.6584 | 12.0 | 4000 | 0.5504 | 90.7960 |
| 0.7825 | 13.02 | 4500 | 0.5455 | 90.4045 |
| 0.6174 | 15.0 | 5000 | 0.5416 | 90.0565 |
| 0.7925 | 16.02 | 5500 | 0.5381 | 90.0217 |
| 0.5983 | 18.0 | 6000 | 0.5355 | 89.7695 |
| 0.741 | 19.02 | 6500 | 0.5331 | 89.7086 |
| 0.5831 | 21.0 | 7000 | 0.5312 | 89.4998 |
| 0.7414 | 22.02 | 7500 | 0.5296 | 89.5259 |
| 0.5902 | 24.0 | 8000 | 0.5284 | 89.3084 |
| 0.7242 | 25.02 | 8500 | 0.5275 | 89.4041 |
| 0.5815 | 27.0 | 9000 | 0.5268 | 89.1518 |
| 0.717 | 28.02 | 9500 | 0.5265 | 89.2562 |
| 0.5887 | 30.0 | 10000 | 0.5263 | 89.1344 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.0