arpachat's picture
End of training
7fa2fcb
|
raw
history blame
1.35 kB
metadata
license: creativeml-openrail-m
base_model: OFA-Sys/small-stable-diffusion-v0
datasets:
  - jwl25b/final_project_dataset
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
inference: true

Text-to-image finetuning - arpachat/small-stable-diffusion-v0-th-1200-e5-g16-bs16

This pipeline was finetuned from OFA-Sys/small-stable-diffusion-v0 on the jwl25b/final_project_dataset dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ["Tommy Hilfiger men's Regular Fit Round Logo Grey Polo"]:

val_imgs_grid

Pipeline usage

You can use the pipeline like so:

from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("arpachat/small-stable-diffusion-v0-th-1200-e5-g16-bs16", torch_dtype=torch.float16)
prompt = "Tommy Hilfiger men's Regular Fit Round Logo Grey Polo"
image = pipeline(prompt).images[0]
image.save("my_image.png")

Training info

These are the key hyperparameters used during training:

  • Epochs: 1200
  • Learning rate: 1e-05
  • Batch size: 16
  • Gradient accumulation steps: 32
  • Image resolution: 512
  • Mixed-precision: fp16

More information on all the CLI arguments and the environment are available on your wandb run page.