arnolfokam commited on
Commit
156043c
·
1 Parent(s): 54e3443

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -15,7 +15,7 @@ widget:
15
  ---
16
 
17
  # Model description
18
- **bert-base-cased-kin** is a model based on the fine-tuned BERT base cased model. It has been trained to recognize four types of entities:
19
 
20
  - dates & time (DATE)
21
  - Location (LOC)
@@ -57,7 +57,7 @@ We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** p
57
  # Results
58
  Model Name| Precision | Recall | F1-score
59
  -|-|-|-
60
- **bert-base-cased-kin**| 75.00 |80.09|77.47
61
 
62
  # Usage
63
 
@@ -65,8 +65,8 @@ Model Name| Precision | Recall | F1-score
65
  from transformers import AutoTokenizer, AutoModelForTokenClassification
66
  from transformers import pipeline
67
 
68
- tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-cased-kin")
69
- model = AutoModelForTokenClassification.from_pretrained("arnolfokam/bert-base-cased-kin")
70
 
71
  nlp = pipeline("ner", model=model, tokenizer=tokenizer)
72
  example = "Rayon Sports yasinyishije rutahizamu w’Umurundi"
 
15
  ---
16
 
17
  # Model description
18
+ **bert-base-uncased-kin** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities:
19
 
20
  - dates & time (DATE)
21
  - Location (LOC)
 
57
  # Results
58
  Model Name| Precision | Recall | F1-score
59
  -|-|-|-
60
+ **bert-base-uncased-kin**| 75.00 |80.09|77.47
61
 
62
  # Usage
63
 
 
65
  from transformers import AutoTokenizer, AutoModelForTokenClassification
66
  from transformers import pipeline
67
 
68
+ tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-kin")
69
+ model = AutoModelForTokenClassification.from_pretrained("arnolfokam/bert-base-uncased-kin")
70
 
71
  nlp = pipeline("ner", model=model, tokenizer=tokenizer)
72
  example = "Rayon Sports yasinyishije rutahizamu w’Umurundi"