arnavj007 commited on
Commit
f6323b3
1 Parent(s): 06818a8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -120
README.md CHANGED
@@ -1,199 +1,157 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
  - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
 
 
 
 
 
73
 
74
- [More Information Needed]
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
 
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
 
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
 
131
  #### Summary
132
 
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
 
 
 
 
 
 
 
 
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags: [qlora, peft, fine-tuning, javascript, causal-lm]
4
  ---
5
 
6
+ # Model Card for gemma-js-instruct-finetune
 
 
 
 
7
 
8
  ## Model Details
9
 
10
  ### Model Description
11
 
12
+ This is the model card for `gemma-js-instruct-finetune`, a fine-tuned version of the `gemma-2b-it` model. This fine-tuned model was trained to improve the performance of generating long-form, structured responses to JavaScript-related instructional tasks. The fine-tuning process used the QLoRA (Quantized Low-Rank Adaptation) method, enabling efficient parameter tuning on limited hardware resources.
13
 
14
+ - **Developed by:** Arnav Jain and collaborators
 
 
15
  - **Funded by [optional]:** [More Information Needed]
16
+ - **Shared by:** [Arnav Jain](https://huggingface.co/arnavj007)
17
+ - **Model type:** Decoder-only causal language model
18
+ - **Language(s) (NLP):** English
19
+ - **License:** Apache 2.0
20
+ - **Finetuned from model:** [gemma-2b-it](https://huggingface.co/google/gemma-2b-it)
 
 
21
 
22
+ ### Model Sources
23
 
24
+ - **Repository:** [gemma-js-instruct-finetune](https://huggingface.co/arnavj007/gemma-js-instruct-finetune)
25
+ - **Dataset:** [Evol-Instruct-JS-Code-500-v1](https://huggingface.co/datasets/pyto-p/Evol-Instruct-JS-Code-500-v1)
26
+ - **Demo:** [Weights & Biases Run](https://wandb.ai/arnavj007-24/huggingface/runs/718nwcab)
27
 
28
  ## Uses
29
 
 
 
30
  ### Direct Use
31
 
32
+ The model can be directly used for generating solutions to JavaScript programming tasks, creating instructional code snippets, and answering technical questions related to JavaScript programming.
33
 
34
+ ### Downstream Use
35
 
36
+ This model can be further fine-tuned for specific programming domains, other languages, or instructional content generation tasks.
 
 
 
 
37
 
38
  ### Out-of-Scope Use
39
 
40
+ This model is not suitable for:
41
+ - Non-technical, general-purpose text generation
42
+ - Applications requiring real-time interaction with external systems
43
+ - Generating solutions for non-JavaScript programming tasks without additional fine-tuning
44
 
45
  ## Bias, Risks, and Limitations
46
 
 
 
 
 
47
  ### Recommendations
48
 
49
+ - Users should validate generated code for correctness and security.
50
+ - Be cautious of potential biases or inaccuracies in the dataset that could propagate into model outputs.
51
+ - Avoid using the model for sensitive or critical applications without thorough testing.
52
 
53
  ## How to Get Started with the Model
54
 
55
+ ```python
56
+ from transformers import AutoTokenizer, AutoModelForCausalLM
57
+
58
+ tokenizer = AutoTokenizer.from_pretrained("arnavj007/gemma-js-instruct-finetune")
59
+ model = AutoModelForCausalLM.from_pretrained("arnavj007/gemma-js-instruct-finetune")
60
+
61
+ def get_completion(query: str):
62
+ prompt = f"<start_of_turn>user {query}<end_of_turn>\n<start_of_turn>model"
63
+ inputs = tokenizer(prompt, return_tensors="pt")
64
+ outputs = model.generate(**inputs, max_new_tokens=1000)
65
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
66
 
67
+ response = get_completion("Create a function in JavaScript to calculate the factorial of a number.")
68
+ print(response)
69
+ ```
70
 
71
  ## Training Details
72
 
73
  ### Training Data
74
 
75
+ The training dataset consisted of 500 JavaScript instructions paired with relevant outputs. These instructions focused on tasks like code snippets, algorithm implementations, and error-handling scenarios.
76
 
77
+ Dataset: [Evol-Instruct-JS-Code-500-v1](https://huggingface.co/datasets/pyto-p/Evol-Instruct-JS-Code-500-v1)
78
 
79
  ### Training Procedure
80
 
81
+ #### Preprocessing
 
 
 
 
82
 
83
+ - Instructions and outputs were formatted using a standardized prompt-response template.
84
+ - Data was tokenized using the Hugging Face tokenizer for `gemma-2b-it`.
85
 
86
  #### Training Hyperparameters
87
 
88
+ - **Training regime:** QLoRA (Quantized Low-Rank Adaptation)
89
+ - **Batch size:** 1 per device
90
+ - **Gradient accumulation steps:** 4
91
+ - **Learning rate:** 2e-4
92
+ - **Training steps:** 100
93
+ - **Optimizer:** Paged AdamW (8-bit)
94
 
95
+ ### Speeds, Sizes, Times
96
 
97
+ - Training runtime: ~1435 seconds
98
+ - Trainable parameters: 3% of the model (~78M)
99
 
100
  ## Evaluation
101
 
 
 
102
  ### Testing Data, Factors & Metrics
103
 
104
  #### Testing Data
105
 
106
+ The test dataset consisted of 100 JavaScript instructions held out from the training set.
 
 
 
 
 
 
 
 
107
 
108
  #### Metrics
109
 
110
+ - Quality of generated code snippets
111
+ - Ability to handle complex prompts with multiple sub-tasks
 
112
 
113
  ### Results
114
 
115
+ The fine-tuned model demonstrated significant improvement in handling long prompts and generating structured code. It provided complete solutions for tasks like API creation with advanced features (e.g., caching, error handling).
116
 
117
  #### Summary
118
 
119
+ Fine-tuning with QLoRA enabled robust performance improvements, making the model capable of generating detailed instructional responses.
 
 
 
 
 
 
120
 
121
  ## Environmental Impact
122
 
123
+ - **Hardware Type:** NVIDIA Tesla T4 GPU (free-tier Colab)
124
+ - **Hours used:** ~0.4 hours
125
+ - **Carbon Emitted:** Minimal (estimated using [ML Impact Calculator](https://mlco2.github.io/impact#compute))
126
 
127
+ ## Technical Specifications
 
 
 
 
 
 
128
 
129
  ### Model Architecture and Objective
130
 
131
+ The model uses a decoder-only architecture optimized for causal language modeling tasks.
132
 
133
  ### Compute Infrastructure
134
 
135
+ - **Hardware:** NVIDIA Tesla T4
136
+ - **Software:**
137
+ - Transformers: 4.38.2
138
+ - PEFT: 0.8.2
139
+ - Accelerate: 0.27.1
140
+ - BitsAndBytes: 0.42.0
 
 
 
141
 
142
+ ## Citation
 
 
143
 
144
  **BibTeX:**
145
+ ```bibtex
146
+ @misc{Jain2024gemmajs,
147
+ author = {Arnav Jain and collaborators},
148
+ title = {gemma-js-instruct-finetune},
149
+ year = {2024},
150
+ howpublished = {\url{https://huggingface.co/arnavj007/gemma-js-instruct-finetune}}
151
+ }
152
+ ```
153
 
154
+ ## More Information
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
+ For questions or feedback, contact [Arnav Jain](https://huggingface.co/arnavj007).
157