whisper-small-sw / README.md
arindam2007b's picture
End of training
0ef802f verified
metadata
library_name: transformers
language:
  - sw
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small sw - Arindam Bose
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: sw
          split: None
          args: 'config: sw, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 28.8790031496425

Whisper Small sw - Arindam Bose

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4499
  • Wer: 28.8790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4791 0.4342 1000 0.5847 37.9256
0.396 0.8684 2000 0.4834 31.9206
0.2344 1.3026 3000 0.4631 31.2366
0.2237 1.7369 4000 0.4402 29.6515
0.1096 2.1711 5000 0.4468 29.0480
0.1219 2.6053 6000 0.4431 28.6169
0.0743 3.0395 7000 0.4428 28.3318
0.0691 3.4737 8000 0.4499 28.8790

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1