|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- autextification2023 |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: ia-detection-distilbert-base-cased |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: autextification2023 |
|
type: autextification2023 |
|
config: detection_en |
|
split: train |
|
args: detection_en |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.6757969952363503 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7481855699444998 |
|
- name: Precision |
|
type: precision |
|
value: 0.6215273673010995 |
|
- name: Recall |
|
type: recall |
|
value: 0.9396782841823056 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ia-detection-distilbert-base-cased |
|
|
|
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the autextification2023 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1147 |
|
- Accuracy: 0.6758 |
|
- F1: 0.7482 |
|
- Precision: 0.6215 |
|
- Recall: 0.9397 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.4298 | 1.0 | 3808 | 0.5010 | 0.7725 | 0.8114 | 0.6964 | 0.9718 | |
|
| 0.4464 | 2.0 | 7616 | 0.4737 | 0.8514 | 0.8531 | 0.8493 | 0.8568 | |
|
| 0.4296 | 3.0 | 11424 | 0.4870 | 0.8402 | 0.8424 | 0.8363 | 0.8486 | |
|
| 0.2034 | 4.0 | 15232 | 0.5404 | 0.8493 | 0.8510 | 0.8475 | 0.8545 | |
|
| 0.0803 | 5.0 | 19040 | 0.6954 | 0.8520 | 0.8491 | 0.8724 | 0.8269 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.13.3 |
|
|