arincon's picture
arincon/ia-detection-distilbert-base-cased
76b80db
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- autextification2023
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: ia-detection-distilbert-base-cased
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: autextification2023
type: autextification2023
config: detection_en
split: train
args: detection_en
metrics:
- name: Accuracy
type: accuracy
value: 0.6757969952363503
- name: F1
type: f1
value: 0.7481855699444998
- name: Precision
type: precision
value: 0.6215273673010995
- name: Recall
type: recall
value: 0.9396782841823056
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ia-detection-distilbert-base-cased
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the autextification2023 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1147
- Accuracy: 0.6758
- F1: 0.7482
- Precision: 0.6215
- Recall: 0.9397
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.4298 | 1.0 | 3808 | 0.5010 | 0.7725 | 0.8114 | 0.6964 | 0.9718 |
| 0.4464 | 2.0 | 7616 | 0.4737 | 0.8514 | 0.8531 | 0.8493 | 0.8568 |
| 0.4296 | 3.0 | 11424 | 0.4870 | 0.8402 | 0.8424 | 0.8363 | 0.8486 |
| 0.2034 | 4.0 | 15232 | 0.5404 | 0.8493 | 0.8510 | 0.8475 | 0.8545 |
| 0.0803 | 5.0 | 19040 | 0.6954 | 0.8520 | 0.8491 | 0.8724 | 0.8269 |
### Framework versions
- Transformers 4.26.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3