Model save
Browse files
README.md
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/resnet-18
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: font-identifier
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: test
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.7810232220609579
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# font-identifier
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.8935
|
36 |
+
- Accuracy: 0.7810
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 16
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 64
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 30
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
70 |
+
| 7.2836 | 1.0 | 344 | 7.2178 | 0.0038 |
|
71 |
+
| 6.6696 | 2.0 | 689 | 6.4685 | 0.0408 |
|
72 |
+
| 5.85 | 3.0 | 1034 | 5.3897 | 0.1254 |
|
73 |
+
| 5.0457 | 4.0 | 1379 | 4.4771 | 0.2143 |
|
74 |
+
| 4.3784 | 5.0 | 1723 | 3.6429 | 0.3242 |
|
75 |
+
| 3.809 | 6.0 | 2068 | 3.1236 | 0.4031 |
|
76 |
+
| 3.4229 | 7.0 | 2413 | 2.6388 | 0.4672 |
|
77 |
+
| 2.8977 | 8.0 | 2758 | 2.3279 | 0.5102 |
|
78 |
+
| 2.78 | 9.0 | 3102 | 2.0974 | 0.5682 |
|
79 |
+
| 2.4452 | 10.0 | 3447 | 1.8605 | 0.6027 |
|
80 |
+
| 2.2195 | 11.0 | 3792 | 1.6783 | 0.6312 |
|
81 |
+
| 2.1097 | 12.0 | 4137 | 1.6049 | 0.6390 |
|
82 |
+
| 1.9025 | 13.0 | 4481 | 1.4255 | 0.6912 |
|
83 |
+
| 1.7973 | 14.0 | 4826 | 1.3253 | 0.7075 |
|
84 |
+
| 1.7647 | 15.0 | 5171 | 1.3030 | 0.7032 |
|
85 |
+
| 1.6772 | 16.0 | 5516 | 1.1988 | 0.7210 |
|
86 |
+
| 1.5523 | 17.0 | 5860 | 1.1040 | 0.7395 |
|
87 |
+
| 1.4821 | 18.0 | 6205 | 1.0786 | 0.7380 |
|
88 |
+
| 1.3764 | 19.0 | 6550 | 1.0603 | 0.7471 |
|
89 |
+
| 1.2913 | 20.0 | 6895 | 1.0169 | 0.7542 |
|
90 |
+
| 1.3479 | 21.0 | 7239 | 0.9999 | 0.7563 |
|
91 |
+
| 1.3133 | 22.0 | 7584 | 0.9928 | 0.7594 |
|
92 |
+
| 1.2241 | 23.0 | 7929 | 0.9342 | 0.7649 |
|
93 |
+
| 1.1651 | 24.0 | 8274 | 0.9283 | 0.7658 |
|
94 |
+
| 1.1605 | 25.0 | 8618 | 0.9176 | 0.7720 |
|
95 |
+
| 1.0283 | 26.0 | 8963 | 0.8970 | 0.7767 |
|
96 |
+
| 1.1211 | 27.0 | 9308 | 0.8983 | 0.7754 |
|
97 |
+
| 1.1563 | 28.0 | 9653 | 0.8729 | 0.7801 |
|
98 |
+
| 1.1399 | 29.0 | 9997 | 0.9021 | 0.7732 |
|
99 |
+
| 1.1715 | 29.93 | 10320 | 0.8935 | 0.7810 |
|
100 |
+
|
101 |
+
|
102 |
+
### Framework versions
|
103 |
+
|
104 |
+
- Transformers 4.35.2
|
105 |
+
- Pytorch 2.0.0
|
106 |
+
- Datasets 2.15.0
|
107 |
+
- Tokenizers 0.15.0
|