Commit
•
81ab2c6
1
Parent(s):
0b3bb4e
Update README.md
Browse files
README.md
CHANGED
@@ -7,12 +7,19 @@ tags:
|
|
7 |
pipeline_tag: text-classification
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
This is a [SetFit model](https://github.com/huggingface/setfit)
|
13 |
|
14 |
-
1.
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Usage
|
18 |
|
@@ -22,17 +29,69 @@ To use this model for inference, first install the SetFit library:
|
|
22 |
python -m pip install setfit
|
23 |
```
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
```python
|
28 |
from setfit import SetFitModel
|
29 |
|
30 |
-
# Download from Hub
|
31 |
-
model = SetFitModel.from_pretrained("
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
```
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
## BibTeX entry and citation info
|
37 |
|
38 |
```bibtex
|
|
|
7 |
pipeline_tag: text-classification
|
8 |
---
|
9 |
|
10 |
+
# 😵💫🦙 Alpaca HalluciHunter
|
11 |
|
12 |
+
This is a cross-lingual SetFit model [SetFit model](https://github.com/huggingface/setfit) to detect potentially bad instructions from Alpaca (and likely other synthetically generated instruction datasets).
|
13 |
|
14 |
+
The model has been fine-tuned with 1,000 labeled examples from the AlpacaCleaned dataset. It leverages a multilingual sentence transformer `paraphrase-multilingual-mpnet-base-v2`, inspired by the findings from the SetFit paper (Section 6. Multilingual experiments.), where they trained models in English that performed well across languages.
|
15 |
+
|
16 |
+
It's a binary classifier with two labels:
|
17 |
+
|
18 |
+
- `ALL GOOD`, a given instruction, input, and output are correct,
|
19 |
+
- `BAD INSTRUCTION`, there's an issue with the instruction, and/or input and output.
|
20 |
+
|
21 |
+
|
22 |
+
This model can greatly speed up the validation of Alpaca Datasets, flagging examples that need to be fixed or simply discarded.
|
23 |
|
24 |
## Usage
|
25 |
|
|
|
29 |
python -m pip install setfit
|
30 |
```
|
31 |
|
32 |
+
Load your Alpaca Dataset:
|
33 |
+
|
34 |
+
```bash
|
35 |
+
from datasets import Dataset, load_dataset
|
36 |
+
|
37 |
+
import pandas as pd
|
38 |
+
|
39 |
+
# this can be a translation (e.g., Spanish, Camoscio Italian Alpaca, etc.)
|
40 |
+
dataset = pd.read_json("https://github.com/gururise/AlpacaDataCleaned/raw/main/alpaca_data_cleaned.json")
|
41 |
+
|
42 |
+
dataset["id"] = [i for i in range(len(dataset))]
|
43 |
+
|
44 |
+
ds = Dataset.from_pandas(dataset)
|
45 |
+
```
|
46 |
+
|
47 |
+
Create a text field containing the instruction, input and output to use for inference:
|
48 |
+
|
49 |
+
```python
|
50 |
+
def transform(r):
|
51 |
+
return {
|
52 |
+
"text": f"INSTRUCTION:\n{r['instruction']}\nINPUT:\n{r['input']}\nOUTPUT:\n{r['output']}\n"
|
53 |
+
}
|
54 |
+
ds = ds.map(transform)
|
55 |
+
```
|
56 |
+
|
57 |
+
Load the model:
|
58 |
|
59 |
```python
|
60 |
from setfit import SetFitModel
|
61 |
|
62 |
+
# Download from Hub
|
63 |
+
model = SetFitModel.from_pretrained("argilla/alpaca-hallucihunter-multilingual ")
|
64 |
+
```
|
65 |
+
|
66 |
+
Perform inference and prediction col to your dataset:
|
67 |
+
```python
|
68 |
+
labels = ["ALL GOOD", "BAD INSTRUCTION"]
|
69 |
+
|
70 |
+
def get_predictions(texts):
|
71 |
+
probas = model.predict_proba(texts, as_numpy=True)
|
72 |
+
for pred in probas:
|
73 |
+
yield [{"label": label, "score": score} for label, score in zip(labels, pred)]
|
74 |
+
|
75 |
+
ds = ds.map(lambda batch: {"prediction": list(get_predictions(batch["text"]))}, batched=True)
|
76 |
```
|
77 |
|
78 |
+
Load the data into Argilla for exploration and validation. You [need to launch Argilla](https://www.argilla.io/blog/launching-argilla-huggingface-hub):
|
79 |
+
```python
|
80 |
+
# Replace api_url with the url to your HF Spaces URL if using Spaces
|
81 |
+
# Replace api_key if you configured a custom API key
|
82 |
+
rg.init(
|
83 |
+
api_url="https://your-agilla-instance.hf.space",
|
84 |
+
api_key="team.apikey"
|
85 |
+
)
|
86 |
+
|
87 |
+
rg_dataset = rg.DatasetForTextClassification().from_datasets(ds)
|
88 |
+
rg.log(records=rg_dataset, name="alpaca_to_clean")
|
89 |
+
```
|
90 |
+
|
91 |
+
## Examples
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
## BibTeX entry and citation info
|
96 |
|
97 |
```bibtex
|