whisper-medium-ar / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
31e7094
|
raw
history blame
2.68 kB
metadata
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
  - hf-asr-leaderboard
datasets:
  - arbml/mgb2
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: Whisper Medium ar - Zaid Alyafeai
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: ar
          split: test
          args: ar
        metrics:
          - type: wer
            value: 34.28
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: ar_eg
          split: test
          args: ar
        metrics:
          - type: wer
            value: 12.04
            name: Wer

openai/whisper-medium

This model is a fine-tuned version of openai/whisper-medium on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8488
  • Wer: 16.5882

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2963 0.1 1000 0.9115 27.3641
0.2676 0.2 2000 0.8796 24.1024
0.3166 0.3 3000 0.8467 20.1700
0.2797 0.4 4000 0.8756 29.4889
0.2302 0.5 5000 0.8523 19.6414
0.2803 0.6 6000 0.8715 19.7413
0.2794 0.7 7000 0.8548 18.6840
0.2173 0.8 8000 0.8543 17.9019
0.217 0.9 9000 0.8518 16.3840
0.1718 1.0 10000 0.8488 16.5882

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2