arampacha's picture
Update README.md
cd890f0
|
raw
history blame
3.03 kB
metadata
language:
  - hy
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - robust-speech-event
  - hy
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: wav2vec2-xls-r-1b-hy-cv
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          type: mozilla-foundation/common_voice_8_0
          name: Common Voice hy-AM
          args: hy-AM
        metrics:
          - type: wer
            value: 0.2755659640905542
            name: WER LM
          - type: cer
            value: 0.08659585230146687
            name: CER LM

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HY-AM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4521
  • Wer: 0.5141
  • Cer: 0.1100
  • Wer+LM: 0.2756
  • Cer+LM: 0.0866

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: tristage
  • lr_scheduler_ratios: [0.1, 0.4, 0.5]
  • training_steps: 1400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
6.1298 19.87 100 3.1204 1.0 1.0
2.7269 39.87 200 0.6200 0.7592 0.1755
1.4643 59.87 300 0.4796 0.5921 0.1277
1.1242 79.87 400 0.4637 0.5359 0.1145
0.9592 99.87 500 0.4521 0.5141 0.1100
0.8704 119.87 600 0.4736 0.4914 0.1045
0.7908 139.87 700 0.5394 0.5250 0.1124
0.7049 159.87 800 0.4822 0.4754 0.0985
0.6299 179.87 900 0.4890 0.4809 0.1028
0.5832 199.87 1000 0.5233 0.4813 0.1028
0.5145 219.87 1100 0.5350 0.4781 0.0994
0.4604 239.87 1200 0.5223 0.4715 0.0984
0.4226 259.87 1300 0.5167 0.4625 0.0953
0.3946 279.87 1400 0.5248 0.4614 0.0950

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0