Uploading PPO trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +4 -4
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 239.42 +/- 71.12
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4fe50d8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4fe50d950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4fe50d9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4fe50da70>", "_build": "<function ActorCriticPolicy._build at 0x7fd4fe50db00>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4fe50db90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4fe50dc20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4fe50dcb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4fe50dd40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4fe50ddd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4fe50de60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd4fe558a80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660022492.559631, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALpPLb72WXI7CErQOHIlIbby8h69evD3twAAgD8AAIA/sxy8vSFYiD/TmZG+jMUzv5CMtb3KuPi8AAAAAAAAAAAA/Gi9KbgfukUDPjZwo5o1yuFUO9Ysf7UAAIA/AACAP3pAHD6p2Da8fgY0O+AfRbkA15u9HnBtugAAgD8AAIA/GqmgPQqXf7nGDOG4q6MJtNjJL7tsLwM4AACAPwAAgD+aFBs+L94LPrqtRLwpZlC+o2xiOzbL7bwAAAAAAAAAALN70D0EAUM+kG5Dvem7VL6zzwW9mvKRvAAAAAAAAAAAZo34PFIgurmOuks8HrmltgZbqDqQCp21AACAPwAAgD8zY1a9KdQkuiFSOboxQsA1qcsoO8I5VjkAAIA/AACAP6ZhDz64CbK7CqSDOgr6ALilFwO9qU+kuQAAgD8AAIA/ZvYXPUgnirrntrU70K4fOKNK4TpNqZE1AACAPwAAgD/Nc/q8AhueP3YLJb5W7BG/LZoYvR5/4DsAAAAAAAAAALbkgD5Spss6TW3eOjJrqjefUJc8lwoAugAAgD8AAIA/Zq45u+zpz7kuXIS6qyPPtRniRzuU4Zo5AACAPwAAgD/miAi9SLnyOfIoqDN11v+vB92TONs4vLMAAIA/AACAP6bvzj0fjfG5DAaOt7OHibJLjaY6BnijNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4e6s3faVYkCUhpRSlIwBbJRN6AOMAXSUR0B+zHkwN9YwdX2UKGgGaAloD0MIt/EnKhvgXUCUhpRSlGgVTegDaBZHQH7QxkI5YHR1fZQoaAZoCWgPQwi5bHTOz/VgQJSGlFKUaBVN6ANoFkdAfuSBFuvU0HV9lChoBmgJaA9DCGwldJdEQWNAlIaUUpRoFU3oA2gWR0B+86Eh7mdRdX2UKGgGaAloD0MIiQeUTTm7ZECUhpRSlGgVTegDaBZHQH8NHZkCmuV1fZQoaAZoCWgPQwg7i96pAGhjQJSGlFKUaBVN6ANoFkdAfy+ZOi35OHV9lChoBmgJaA9DCJBOXfmssWJAlIaUUpRoFU3oA2gWR0B/Qr5dnkDIdX2UKGgGaAloD0MIHv6arFFBXUCUhpRSlGgVTegDaBZHQH9F/WH1vl51fZQoaAZoCWgPQwiCWDZzSH4zwJSGlFKUaBVLbWgWR0B/TL6P8yeqdX2UKGgGaAloD0MIXcXiN4VTYUCUhpRSlGgVTegDaBZHQH9QkjcEeQx1fZQoaAZoCWgPQwjxRXu8UB9wQJSGlFKUaBVNGgFoFkdAf1XpMHryD3V9lChoBmgJaA9DCPKVQErsKGFAlIaUUpRoFU3oA2gWR0B/WzF5v99/dX2UKGgGaAloD0MIhxiveVXkZkCUhpRSlGgVTegDaBZHQH9dKoAGSp11fZQoaAZoCWgPQwgzbmqg+QFhQJSGlFKUaBVN6ANoFkdAf3XHvttygnV9lChoBmgJaA9DCMsSnWWWO2BAlIaUUpRoFU3oA2gWR0B/77Bl+VkddX2UKGgGaAloD0MI+yE2WLgPZECUhpRSlGgVTegDaBZHQH/55OJtSAJ1fZQoaAZoCWgPQwgCKEaWTOBjQJSGlFKUaBVN6ANoFkdAf/odgv114nV9lChoBmgJaA9DCNXPm4rUCWJAlIaUUpRoFU3oA2gWR0CABqqoZQ54dX2UKGgGaAloD0MIPZ6WH7i5ZkCUhpRSlGgVTegDaBZHQIALNPP9kz51fZQoaAZoCWgPQwimRBK9DGhiQJSGlFKUaBVN6ANoFkdAgA2hC+lCTnV9lChoBmgJaA9DCF0Y6UXtv2FAlIaUUpRoFU3oA2gWR0CAF9jH4oJBdX2UKGgGaAloD0MIg/jAjv/iX0CUhpRSlGgVTegDaBZHQIAfmY2Kl551fZQoaAZoCWgPQwhzvW2mQvZmQJSGlFKUaBVNJwNoFkdAgDPz7/GVA3V9lChoBmgJaA9DCL5nJEKjW2BAlIaUUpRoFU3oA2gWR0CARcMZxaPkdX2UKGgGaAloD0MIRwINNnVhZECUhpRSlGgVTegDaBZHQIBHOZuyeI51fZQoaAZoCWgPQwgT8kHP5uRmQJSGlFKUaBVN6ANoFkdAgEohy8zyjHV9lChoBmgJaA9DCE6bcRqiqFBAlIaUUpRoFUu3aBZHQIBKrdrO7g91fZQoaAZoCWgPQwgAcy1agIxkQJSGlFKUaBVN6ANoFkdAgE4+23KB/nV9lChoBmgJaA9DCIpW7gVmymNAlIaUUpRoFU3oA2gWR0CAUJBacI7edX2UKGgGaAloD0MIbVM8LqrDWkCUhpRSlGgVTegDaBZHQIBRcqBmPHV1fZQoaAZoCWgPQwgk7xzKUPZgQJSGlFKUaBVN6ANoFkdAgFwXX7Lt/nV9lChoBmgJaA9DCGb1DrfDAGVAlIaUUpRoFU3oA2gWR0CAmAURFqi5dX2UKGgGaAloD0MIDypxHeMPZkCUhpRSlGgVTegDaBZHQICddf5ULlV1fZQoaAZoCWgPQwiY++QoQK5iQJSGlFKUaBVN6ANoFkdAgJ2lOwgTy3V9lChoBmgJaA9DCNBCAkYXh2JAlIaUUpRoFU3oA2gWR0CAq3RWtEG8dX2UKGgGaAloD0MI1siutIxdX0CUhpRSlGgVTegDaBZHQICwBr56+nJ1fZQoaAZoCWgPQwhLdQEvs0dlQJSGlFKUaBVN6ANoFkdAgLJn+6y0KXV9lChoBmgJaA9DCC1CsRU0/GVAlIaUUpRoFU3oA2gWR0CAvM35vcagdX2UKGgGaAloD0MIWK1M+CWrZ0CUhpRSlGgVTegDaBZHQIDFL4SHuZ11fZQoaAZoCWgPQwg0ZhL1AiNmQJSGlFKUaBVN6ANoFkdAgOpDMvAXVXV9lChoBmgJaA9DCMCSq1h8iWJAlIaUUpRoFU3oA2gWR0CA67rO7g89dX2UKGgGaAloD0MIr0Ffenu6YkCUhpRSlGgVTegDaBZHQIDu2Jiy6c11fZQoaAZoCWgPQwjNOuP74hVkQJSGlFKUaBVN6ANoFkdAgO9l05lvqHV9lChoBmgJaA9DCAgddAmHRGRAlIaUUpRoFU3oA2gWR0CA8rvAoG6gdX2UKGgGaAloD0MIK702GyvDZUCUhpRSlGgVTegDaBZHQID1GHUMG5d1fZQoaAZoCWgPQwh6GFqdHGNlQJSGlFKUaBVN6ANoFkdAgPYNnoPkJnV9lChoBmgJaA9DCMuFyr+WimZAlIaUUpRoFU3oA2gWR0CBAJvlU6xPdX2UKGgGaAloD0MIIHwo0ZIfY0CUhpRSlGgVTegDaBZHQIE8Kg2606Z1fZQoaAZoCWgPQwgAjdKlf5pjQJSGlFKUaBVN6ANoFkdAgUEzreIl+nV9lChoBmgJaA9DCKuTMxR3dGNAlIaUUpRoFU3oA2gWR0CBQVLM9r44dX2UKGgGaAloD0MILQsm/qiLYkCUhpRSlGgVTegDaBZHQIFK6zHCGet1fZQoaAZoCWgPQwhnZfuQN7VhQJSGlFKUaBVN6ANoFkdAgU9xpDeCTXV9lChoBmgJaA9DCHbfMTz2QmBAlIaUUpRoFU3oA2gWR0CBUfUQ04zadX2UKGgGaAloD0MI8gwa+iceTkCUhpRSlGgVS8xoFkdAgVjk9t/FznV9lChoBmgJaA9DCPvrFRbcEVpAlIaUUpRoFU3oA2gWR0CBXPKnNxEOdX2UKGgGaAloD0MIjq1nCEdHZECUhpRSlGgVTegDaBZHQIFk0EcKgI11fZQoaAZoCWgPQwhViEfi5aRnQJSGlFKUaBVN6ANoFkdAgYxR5kbxVnV9lChoBmgJaA9DCKfOo+L/MGVAlIaUUpRoFU3oA2gWR0CBjfA1vVEvdX2UKGgGaAloD0MI9FMcB15EZECUhpRSlGgVTegDaBZHQIGRKg9Net11fZQoaAZoCWgPQwg661OOSf5iQJSGlFKUaBVN6ANoFkdAgZHFFUhmoXV9lChoBmgJaA9DCOGVJM/1rGJAlIaUUpRoFU3oA2gWR0CBlTleWv8qdX2UKGgGaAloD0MIkdRCyeQsYkCUhpRSlGgVTegDaBZHQIGXkQqZtvZ1fZQoaAZoCWgPQwizeLEwRCBfQJSGlFKUaBVN6ANoFkdAgZiKRMewLXV9lChoBmgJaA9DCEhPkUPEoT9AlIaUUpRoFUvMaBZHQIGhtfzBhx51fZQoaAZoCWgPQwg+6xotBzJgQJSGlFKUaBVN6ANoFkdAgaNHJLdvbXV9lChoBmgJaA9DCFVq9kArkWVAlIaUUpRoFU3oA2gWR0CB3g0kWykcdX2UKGgGaAloD0MIvXDnwkhhZkCUhpRSlGgVTegDaBZHQIHihStNi6R1fZQoaAZoCWgPQwiq86j4v7dlQJSGlFKUaBVN6ANoFkdAgesRlHz6J3V9lChoBmgJaA9DCJwYkpOJP11AlIaUUpRoFU3oA2gWR0CB7xrIo3JgdX2UKGgGaAloD0MIn8iTpOt7ZUCUhpRSlGgVTegDaBZHQIHxcFbFCLN1fZQoaAZoCWgPQwhgAOFDiURhQJSGlFKUaBVN6ANoFkdAgfelvAGjbnV9lChoBmgJaA9DCEKUL2ihaWpAlIaUUpRoFU3oA2gWR0CB+w6vJRwZdX2UKGgGaAloD0MI5lyKq8rMZUCUhpRSlGgVTegDaBZHQIICCDkELYx1fZQoaAZoCWgPQwgw8UdR51plQJSGlFKUaBVN6ANoFkdAgik5of0VanV9lChoBmgJaA9DCEaU9gZf3WNAlIaUUpRoFU3oA2gWR0CCLJJxNqQBdX2UKGgGaAloD0MINum2RC5RaECUhpRSlGgVTegDaBZHQIItMg0TDfp1fZQoaAZoCWgPQwiSW5NuS8xiQJSGlFKUaBVN6ANoFkdAgjD3sgMc63V9lChoBmgJaA9DCNaNd0dGz2hAlIaUUpRoFU3oA2gWR0CCM2qd6LOzdX2UKGgGaAloD0MIj6hQ3dxuZECUhpRSlGgVTegDaBZHQII0W8qWkad1fZQoaAZoCWgPQwg2c0hqoSdkQJSGlFKUaBVN6ANoFkdAgj3oNd7fHnV9lChoBmgJaA9DCMH/VrJjXmZAlIaUUpRoFU3oA2gWR0CCP33VTaTPdX2UKGgGaAloD0MIsJC5MqjxZ0CUhpRSlGgVTegDaBZHQIJ6zKNhmXh1fZQoaAZoCWgPQwh9zt2uFxtiQJSGlFKUaBVN6ANoFkdAgn+VjZtelnV9lChoBmgJaA9DCFN1j2yutWdAlIaUUpRoFU3oA2gWR0CCiNsVLzwudX2UKGgGaAloD0MI2qokso/LY0CUhpRSlGgVTegDaBZHQIKNgGW2PT51fZQoaAZoCWgPQwgxtDo5Q6NlQJSGlFKUaBVN6ANoFkdAgpAT0Yj0MHV9lChoBmgJaA9DCNldoKTARGRAlIaUUpRoFU3oA2gWR0CClzdxhlUZdX2UKGgGaAloD0MIL9y5MNIXY0CUhpRSlGgVTegDaBZHQIKa+T/yXld1fZQoaAZoCWgPQwg3UOCdfI5mQJSGlFKUaBVN6ANoFkdAgqJWFN+LFXV9lChoBmgJaA9DCDNrKSBtc2ZAlIaUUpRoFU3oA2gWR0CCyvEVFhG6dX2UKGgGaAloD0MINSpwso07bUCUhpRSlGgVTaYBaBZHQILOTDl5nlJ1fZQoaAZoCWgPQwjYRdEDn0tnQJSGlFKUaBVN6ANoFkdAgs5sk6cRUXV9lChoBmgJaA9DCJQT7SokN2RAlIaUUpRoFU3oA2gWR0CCzweVcD8tdX2UKGgGaAloD0MIcvikE4nBakCUhpRSlGgVTcADaBZHQILQtcGC7K91fZQoaAZoCWgPQwhVv9L58JZgQJSGlFKUaBVN6ANoFkdAgtJZQP7N0XV9lChoBmgJaA9DCBPXMa64gWRAlIaUUpRoFU3oA2gWR0CC1Wi7CiyqdX2UKGgGaAloD0MIXMr5Yu8KZECUhpRSlGgVTegDaBZHQILeI+hXbM51fZQoaAZoCWgPQwhSKXY0juZjQJSGlFKUaBVN6ANoFkdAgt+WSt/4I3V9lChoBmgJaA9DCPJ4Wn7gajNAlIaUUpRoFUvYaBZHQILpVJSR8tx1fZQoaAZoCWgPQwgZNzXQ/PhmQJSGlFKUaBVN6ANoFkdAgup9t2s7uHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4fe50d8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4fe50d950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4fe50d9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4fe50da70>", "_build": "<function ActorCriticPolicy._build at 0x7fd4fe50db00>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4fe50db90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4fe50dc20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4fe50dcb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4fe50dd40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4fe50ddd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4fe50de60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd4fe558a80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660023309.2262125, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZ3kL0pCAy69inOu5HpfzhS8Km5zeGjOAAAgD8AAIA/gOlUPTAI1j6/XJ67E7cHv5GQIz1D3fO8AAAAAAAAAAAmna69CodWuQOgWrnVWsazIodNuo5zgDgAAAAAAACAPzMk6Lz2cCC63q/mOmLl4jXDxvY65vEDugAAgD8AAIA/mu83vSm8VLpc26650bUatl6kCrvnF8o4AACAPwAAgD/N0Bo+D1cDvA+nBDnHwJ6324xevXDkJbgAAIA/AACAP0ADtD3smcW5RmEQvMUrGL1FT6S6nphOvAAAAAAAAAAARpOIPj1mUz5D+9S9dsppvtgVNz1FKk69AAAAAAAAAABAWJy9SG+WurYOYDh5y7ozZULeOmr0f7cAAIA/AACAP80qHTyP7jO6xzCfuy8zWzZLU5Q5koS5OgAAgD8AAIA/MN1WvgoOFDzDF28699s7uP20nb3C/I65AACAPwAAgD9amf09zEODPmZOET3zicO+T9iBvJrJBTwAAAAAAAAAADNAtT2PZlu6augIPOVZhjZCE506N26ANQAAgD8AAIA/zVhHPBQMkrrN8405XqtuM4aI3LpWaKK4AACAPwAAgD9zxZY9hVPWuWvJ0zkfHAg2To4/u0hQ+rgAAIA/AACAP5OoSj7YF9Q9cMD5vaMz/73VV2Q8mGjnvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr13acFgvZkCUhpRSlIwBbJRN6AOMAXSUR0CW/NFAmiQDdX2UKGgGaAloD0MIUKinj8D+Y0CUhpRSlGgVTegDaBZHQJb+zoV2zOZ1fZQoaAZoCWgPQwgEOShhJjJgQJSGlFKUaBVN6ANoFkdAlwY2cSXdCXV9lChoBmgJaA9DCFIN+z2xUjdAlIaUUpRoFUusaBZHQJcHK7nPmgd1fZQoaAZoCWgPQwggRgiPtgFgQJSGlFKUaBVN6ANoFkdAlwjFRUFSsXV9lChoBmgJaA9DCJHSbB6HImVAlIaUUpRoFU3oA2gWR0CXDYAqNIbwdX2UKGgGaAloD0MIc71tpsK1ZUCUhpRSlGgVTVYDaBZHQJcPS6z3RHB1fZQoaAZoCWgPQwgnnx7bsk1kQJSGlFKUaBVN6ANoFkdAlxE+AZsKs3V9lChoBmgJaA9DCFXZd0VwvGNAlIaUUpRoFU3oA2gWR0CXE5HKfWc0dX2UKGgGaAloD0MIkluTbksnYkCUhpRSlGgVTegDaBZHQJcUQjY7JXB1fZQoaAZoCWgPQwgf2zLgrNxnQJSGlFKUaBVN6ANoFkdAl0VVFhG6PXV9lChoBmgJaA9DCJIgXAGFr2RAlIaUUpRoFU3oA2gWR0CXRWio86mwdX2UKGgGaAloD0MIzXLZ6JyrQ0CUhpRSlGgVS41oFkdAl0cQXuVopXV9lChoBmgJaA9DCDvGFRdHSWVAlIaUUpRoFU3oA2gWR0CXSf7gKnejdX2UKGgGaAloD0MIJqyNsZOvY0CUhpRSlGgVTegDaBZHQJdQCr7wazh1fZQoaAZoCWgPQwi14EVfQZJpQJSGlFKUaBVN6ANoFkdAl1OOqrBCU3V9lChoBmgJaA9DCO8cylCVymJAlIaUUpRoFU3oA2gWR0CXVQaPS2H+dX2UKGgGaAloD0MIGXRC6KCjYkCUhpRSlGgVTegDaBZHQJdVN1dPci51fZQoaAZoCWgPQwj7zcR0oS9iQJSGlFKUaBVN6ANoFkdAl1oQwfyPMnV9lChoBmgJaA9DCHMqGQCqXEJAlIaUUpRoFUuRaBZHQJdbNDst03h1fZQoaAZoCWgPQwg6d7teGj1xQJSGlFKUaBVNEQJoFkdAl1tJhOP/73V9lChoBmgJaA9DCJM16iGa/W9AlIaUUpRoFU2PAmgWR0CXW8FGXokidX2UKGgGaAloD0MITRHg9C5eGECUhpRSlGgVS6poFkdAl2EschkiEHV9lChoBmgJaA9DCMjRHFn5RTNAlIaUUpRoFUucaBZHQJdhv1+RYA91fZQoaAZoCWgPQwgFUmLX9mdfQJSGlFKUaBVN6ANoFkdAl2JJwCKaX3V9lChoBmgJaA9DCEMfLGND8WFAlIaUUpRoFU3oA2gWR0CXYxD3ueBhdX2UKGgGaAloD0MIDag3o2bhZUCUhpRSlGgVTegDaBZHQJdkasOoYN11fZQoaAZoCWgPQwg9nStKCYZewJSGlFKUaBVNpAFoFkdAl2aiZ8a4t3V9lChoBmgJaA9DCITXLm04R2NAlIaUUpRoFU3oA2gWR0CXaETP0I1MdX2UKGgGaAloD0MIRdYaSm3cbUCUhpRSlGgVTTQBaBZHQJdtpG0/nnx1fZQoaAZoCWgPQwheEfxvJQRqQJSGlFKUaBVN6ANoFkdAl23uj7ALzHV9lChoBmgJaA9DCJrOTgZHL1BAlIaUUpRoFUuzaBZHQJdt+LpA2Q51fZQoaAZoCWgPQwjxvFRszL1hQJSGlFKUaBVN6ANoFkdAl2/XFtKqXHV9lChoBmgJaA9DCBh5WRMLMWBAlIaUUpRoFU3oA2gWR0CXoX5PuXu3dX2UKGgGaAloD0MIzXNEvsuQZECUhpRSlGgVTegDaBZHQJejM42jwhJ1fZQoaAZoCWgPQwgL1c3F3z1uQJSGlFKUaBVNbgFoFkdAl6Tendfsu3V9lChoBmgJaA9DCIcahSSz0lJAlIaUUpRoFUuBaBZHQJek3TTfBN51fZQoaAZoCWgPQwhqEyf3O3QyQJSGlFKUaBVLm2gWR0CXpZsNlRP5dX2UKGgGaAloD0MIj2/vGvQBZUCUhpRSlGgVTegDaBZHQJel7Vqesgd1fZQoaAZoCWgPQwiaRL3g0/1qQJSGlFKUaBVNaAJoFkdAl6YSXt0FKXV9lChoBmgJaA9DCEGDTZ1HxTlAlIaUUpRoFUtcaBZHQJeoCpsGgSR1fZQoaAZoCWgPQwgj2/l+6u5iQJSGlFKUaBVN6ANoFkdAl6qM6FM7EHV9lChoBmgJaA9DCPImv0UnXzpAlIaUUpRoFUuxaBZHQJesaAbyYol1fZQoaAZoCWgPQwiYvtcQnLZlQJSGlFKUaBVN6ANoFkdAl62b/wRXfnV9lChoBmgJaA9DCFOXjGMkpWxAlIaUUpRoFU2GA2gWR0CXsZKXOW0JdX2UKGgGaAloD0MIOh4zUJmRZkCUhpRSlGgVTegDaBZHQJe95G0/nnx1fZQoaAZoCWgPQwg57Sk5p39lQJSGlFKUaBVN6ANoFkdAl76jOTq0MXV9lChoBmgJaA9DCJlJ1Au+VGJAlIaUUpRoFU3oA2gWR0CXv5ois4kvdX2UKGgGaAloD0MIhxqFJLOtbECUhpRSlGgVTbsCaBZHQJfCaGUOd5J1fZQoaAZoCWgPQwh/arx0k0BAQJSGlFKUaBVLk2gWR0CXxUFDfFaTdX2UKGgGaAloD0MIr5P6srRZZUCUhpRSlGgVTegDaBZHQJfGITURWcV1fZQoaAZoCWgPQwi8WBgipx5iQJSGlFKUaBVN6ANoFkdAl80ezhP0qnV9lChoBmgJaA9DCPT8aaO6smJAlIaUUpRoFU3oA2gWR0CXz37EpAlfdX2UKGgGaAloD0MIpRKe0OspZkCUhpRSlGgVTegDaBZHQJfPl+3H7xd1fZQoaAZoCWgPQwgGobyPI6tlQJSGlFKUaBVN6ANoFkdAmAMKxcE/0XV9lChoBmgJaA9DCOtvCcA/JQDAlIaUUpRoFUuKaBZHQJgDbwLE1l51fZQoaAZoCWgPQwgVHcnlPypLQJSGlFKUaBVLZmgWR0CYA+Ed/8VIdX2UKGgGaAloD0MI8wTCTjGbZUCUhpRSlGgVTegDaBZHQJgD66g/Tsp1fZQoaAZoCWgPQwjejQWFQdVfQJSGlFKUaBVN6ANoFkdAmARCuuA7P3V9lChoBmgJaA9DCNmz5zK1S2NAlIaUUpRoFU3oA2gWR0CYBuMlkYoBdX2UKGgGaAloD0MIDTZ1HpWoZUCUhpRSlGgVTegDaBZHQJgJrS3LFGZ1fZQoaAZoCWgPQwgpIVhVL2diQJSGlFKUaBVN6ANoFkdAmAu5SeiBXnV9lChoBmgJaA9DCEWA07v4KGRAlIaUUpRoFU3oA2gWR0CYDNwyZa3adX2UKGgGaAloD0MI9MRztkCqc0CUhpRSlGgVTSsBaBZHQJgP/acqe9V1fZQoaAZoCWgPQwhkIqXZPAJiQJSGlFKUaBVN6ANoFkdAmBB6hxo7FXV9lChoBmgJaA9DCN3sD5Tbck9AlIaUUpRoFUuCaBZHQJgR80m+j/N1fZQoaAZoCWgPQwhxcr9DkS1wQJSGlFKUaBVN/QFoFkdAmBkkj9n9N3V9lChoBmgJaA9DCPyPTIdO8WFAlIaUUpRoFU3oA2gWR0CYGzoSL61tdX2UKGgGaAloD0MIRiQKLWsjZUCUhpRSlGgVTegDaBZHQJgcFVENOM51fZQoaAZoCWgPQwhmvRjKCXBiQJSGlFKUaBVN6ANoFkdAmB56UNayKXV9lChoBmgJaA9DCEgxQKIJlAHAlIaUUpRoFUugaBZHQJggGL2pQ1t1fZQoaAZoCWgPQwhsrwW9t61uQJSGlFKUaBVN7wFoFkdAmCBiCe2/jHV9lChoBmgJaA9DCLYsX5fh3mVAlIaUUpRoFU3oA2gWR0CYIOvqkdmydX2UKGgGaAloD0MIP5EnSVcRZUCUhpRSlGgVTegDaBZHQJghkjB2wFF1fZQoaAZoCWgPQwia7nVSX+VmQJSGlFKUaBVNwQFoFkdAmCSsMNMGo3V9lChoBmgJaA9DCDiB6bRuTGJAlIaUUpRoFU3oA2gWR0CYKLPeYUnHdX2UKGgGaAloD0MIXoHoSZlIN0CUhpRSlGgVS7FoFkdAmFuYKtxMnXV9lChoBmgJaA9DCPLuyFhttV9AlIaUUpRoFU3oA2gWR0CYW+gsbvPUdX2UKGgGaAloD0MIFvcfmQ6QXECUhpRSlGgVTegDaBZHQJhcPskY4yZ1fZQoaAZoCWgPQwjhJM0fU1RmQJSGlFKUaBVN6ANoFkdAmFyx20Re1XV9lChoBmgJaA9DCH78pUX95HFAlIaUUpRoFU1wAWgWR0CYXmfZVXFMdX2UKGgGaAloD0MIQQx07QuWbkCUhpRSlGgVTZMDaBZHQJhezAzpHI91fZQoaAZoCWgPQwiFYFW9/K1VQJSGlFKUaBVN6ANoFkdAmF+BN/OMVHV9lChoBmgJaA9DCJxsA3egMEBAlIaUUpRoFUudaBZHQJhiRkMCtA91fZQoaAZoCWgPQwjNsbyrHhAGQJSGlFKUaBVLp2gWR0CYZW/R3NcGdX2UKGgGaAloD0MIea9amfDGY0CUhpRSlGgVTegDaBZHQJho4TL4etF1fZQoaAZoCWgPQwhJhbGFIINiQJSGlFKUaBVN6ANoFkdAmGlzTa0x/XV9lChoBmgJaA9DCBcs1QW84D9AlIaUUpRoFUupaBZHQJhpqxlg+hZ1fZQoaAZoCWgPQwg0uRgDq69wQJSGlFKUaBVNCgFoFkdAmGqhQJokA3V9lChoBmgJaA9DCACPqFDdRDtAlIaUUpRoFUu1aBZHQJhwdNKyv9t1fZQoaAZoCWgPQwgvFobIafJmQJSGlFKUaBVN6ANoFkdAmHRa5Xlr/XV9lChoBmgJaA9DCE/Pu7GgTmNAlIaUUpRoFU3oA2gWR0CYdVkauOjqdX2UKGgGaAloD0MIYwys4/gYYkCUhpRSlGgVTegDaBZHQJh3+ouPFNt1fZQoaAZoCWgPQwigT+RJ0olkQJSGlFKUaBVN6ANoFkdAmHo09hZyMnV9lChoBmgJaA9DCFkxXB2AmmBAlIaUUpRoFU3oA2gWR0CYetHcDbJwdX2UKGgGaAloD0MIu0bLgZ46Y0CUhpRSlGgVTegDaBZHQJh7lKvmozh1fZQoaAZoCWgPQwirJR3lYF5uQJSGlFKUaBVL9mgWR0CYgIbKifxudX2UKGgGaAloD0MIjGmme91NcECUhpRSlGgVTRgCaBZHQJiBnJ3gUDd1fZQoaAZoCWgPQwgUlnhA2TJIQJSGlFKUaBVLm2gWR0CYgmvysjmkdX2UKGgGaAloD0MILLe0GhJmZUCUhpRSlGgVTegDaBZHQJiDhy7wrlN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41bedda27fd3878b8023bd8d6bbb9da292a1fc29244f462bbabf09345836a308
|
3 |
+
size 147123
|
ppo-LunarLander-v2/data
CHANGED
@@ -47,7 +47,7 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.001,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,7 +69,7 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
@@ -82,7 +82,7 @@
|
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
"n_epochs": 10,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1660023309.2262125,
|
51 |
"learning_rate": 0.001,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZ3kL0pCAy69inOu5HpfzhS8Km5zeGjOAAAgD8AAIA/gOlUPTAI1j6/XJ67E7cHv5GQIz1D3fO8AAAAAAAAAAAmna69CodWuQOgWrnVWsazIodNuo5zgDgAAAAAAACAPzMk6Lz2cCC63q/mOmLl4jXDxvY65vEDugAAgD8AAIA/mu83vSm8VLpc26650bUatl6kCrvnF8o4AACAPwAAgD/N0Bo+D1cDvA+nBDnHwJ6324xevXDkJbgAAIA/AACAP0ADtD3smcW5RmEQvMUrGL1FT6S6nphOvAAAAAAAAAAARpOIPj1mUz5D+9S9dsppvtgVNz1FKk69AAAAAAAAAABAWJy9SG+WurYOYDh5y7ozZULeOmr0f7cAAIA/AACAP80qHTyP7jO6xzCfuy8zWzZLU5Q5koS5OgAAgD8AAIA/MN1WvgoOFDzDF28699s7uP20nb3C/I65AACAPwAAgD9amf09zEODPmZOET3zicO+T9iBvJrJBTwAAAAAAAAAADNAtT2PZlu6augIPOVZhjZCE506N26ANQAAgD8AAIA/zVhHPBQMkrrN8405XqtuM4aI3LpWaKK4AACAPwAAgD9zxZY9hVPWuWvJ0zkfHAg2To4/u0hQ+rgAAIA/AACAP5OoSj7YF9Q9cMD5vaMz/73VV2Q8mGjnvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVaxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr13acFgvZkCUhpRSlIwBbJRN6AOMAXSUR0CW/NFAmiQDdX2UKGgGaAloD0MIUKinj8D+Y0CUhpRSlGgVTegDaBZHQJb+zoV2zOZ1fZQoaAZoCWgPQwgEOShhJjJgQJSGlFKUaBVN6ANoFkdAlwY2cSXdCXV9lChoBmgJaA9DCFIN+z2xUjdAlIaUUpRoFUusaBZHQJcHK7nPmgd1fZQoaAZoCWgPQwggRgiPtgFgQJSGlFKUaBVN6ANoFkdAlwjFRUFSsXV9lChoBmgJaA9DCJHSbB6HImVAlIaUUpRoFU3oA2gWR0CXDYAqNIbwdX2UKGgGaAloD0MIc71tpsK1ZUCUhpRSlGgVTVYDaBZHQJcPS6z3RHB1fZQoaAZoCWgPQwgnnx7bsk1kQJSGlFKUaBVN6ANoFkdAlxE+AZsKs3V9lChoBmgJaA9DCFXZd0VwvGNAlIaUUpRoFU3oA2gWR0CXE5HKfWc0dX2UKGgGaAloD0MIkluTbksnYkCUhpRSlGgVTegDaBZHQJcUQjY7JXB1fZQoaAZoCWgPQwgf2zLgrNxnQJSGlFKUaBVN6ANoFkdAl0VVFhG6PXV9lChoBmgJaA9DCJIgXAGFr2RAlIaUUpRoFU3oA2gWR0CXRWio86mwdX2UKGgGaAloD0MIzXLZ6JyrQ0CUhpRSlGgVS41oFkdAl0cQXuVopXV9lChoBmgJaA9DCDvGFRdHSWVAlIaUUpRoFU3oA2gWR0CXSf7gKnejdX2UKGgGaAloD0MIJqyNsZOvY0CUhpRSlGgVTegDaBZHQJdQCr7wazh1fZQoaAZoCWgPQwi14EVfQZJpQJSGlFKUaBVN6ANoFkdAl1OOqrBCU3V9lChoBmgJaA9DCO8cylCVymJAlIaUUpRoFU3oA2gWR0CXVQaPS2H+dX2UKGgGaAloD0MIGXRC6KCjYkCUhpRSlGgVTegDaBZHQJdVN1dPci51fZQoaAZoCWgPQwj7zcR0oS9iQJSGlFKUaBVN6ANoFkdAl1oQwfyPMnV9lChoBmgJaA9DCHMqGQCqXEJAlIaUUpRoFUuRaBZHQJdbNDst03h1fZQoaAZoCWgPQwg6d7teGj1xQJSGlFKUaBVNEQJoFkdAl1tJhOP/73V9lChoBmgJaA9DCJM16iGa/W9AlIaUUpRoFU2PAmgWR0CXW8FGXokidX2UKGgGaAloD0MITRHg9C5eGECUhpRSlGgVS6poFkdAl2EschkiEHV9lChoBmgJaA9DCMjRHFn5RTNAlIaUUpRoFUucaBZHQJdhv1+RYA91fZQoaAZoCWgPQwgFUmLX9mdfQJSGlFKUaBVN6ANoFkdAl2JJwCKaX3V9lChoBmgJaA9DCEMfLGND8WFAlIaUUpRoFU3oA2gWR0CXYxD3ueBhdX2UKGgGaAloD0MIDag3o2bhZUCUhpRSlGgVTegDaBZHQJdkasOoYN11fZQoaAZoCWgPQwg9nStKCYZewJSGlFKUaBVNpAFoFkdAl2aiZ8a4t3V9lChoBmgJaA9DCITXLm04R2NAlIaUUpRoFU3oA2gWR0CXaETP0I1MdX2UKGgGaAloD0MIRdYaSm3cbUCUhpRSlGgVTTQBaBZHQJdtpG0/nnx1fZQoaAZoCWgPQwheEfxvJQRqQJSGlFKUaBVN6ANoFkdAl23uj7ALzHV9lChoBmgJaA9DCJrOTgZHL1BAlIaUUpRoFUuzaBZHQJdt+LpA2Q51fZQoaAZoCWgPQwjxvFRszL1hQJSGlFKUaBVN6ANoFkdAl2/XFtKqXHV9lChoBmgJaA9DCBh5WRMLMWBAlIaUUpRoFU3oA2gWR0CXoX5PuXu3dX2UKGgGaAloD0MIzXNEvsuQZECUhpRSlGgVTegDaBZHQJejM42jwhJ1fZQoaAZoCWgPQwgL1c3F3z1uQJSGlFKUaBVNbgFoFkdAl6Tendfsu3V9lChoBmgJaA9DCIcahSSz0lJAlIaUUpRoFUuBaBZHQJek3TTfBN51fZQoaAZoCWgPQwhqEyf3O3QyQJSGlFKUaBVLm2gWR0CXpZsNlRP5dX2UKGgGaAloD0MIj2/vGvQBZUCUhpRSlGgVTegDaBZHQJel7Vqesgd1fZQoaAZoCWgPQwiaRL3g0/1qQJSGlFKUaBVNaAJoFkdAl6YSXt0FKXV9lChoBmgJaA9DCEGDTZ1HxTlAlIaUUpRoFUtcaBZHQJeoCpsGgSR1fZQoaAZoCWgPQwgj2/l+6u5iQJSGlFKUaBVN6ANoFkdAl6qM6FM7EHV9lChoBmgJaA9DCPImv0UnXzpAlIaUUpRoFUuxaBZHQJesaAbyYol1fZQoaAZoCWgPQwiYvtcQnLZlQJSGlFKUaBVN6ANoFkdAl62b/wRXfnV9lChoBmgJaA9DCFOXjGMkpWxAlIaUUpRoFU2GA2gWR0CXsZKXOW0JdX2UKGgGaAloD0MIOh4zUJmRZkCUhpRSlGgVTegDaBZHQJe95G0/nnx1fZQoaAZoCWgPQwg57Sk5p39lQJSGlFKUaBVN6ANoFkdAl76jOTq0MXV9lChoBmgJaA9DCJlJ1Au+VGJAlIaUUpRoFU3oA2gWR0CXv5ois4kvdX2UKGgGaAloD0MIhxqFJLOtbECUhpRSlGgVTbsCaBZHQJfCaGUOd5J1fZQoaAZoCWgPQwh/arx0k0BAQJSGlFKUaBVLk2gWR0CXxUFDfFaTdX2UKGgGaAloD0MIr5P6srRZZUCUhpRSlGgVTegDaBZHQJfGITURWcV1fZQoaAZoCWgPQwi8WBgipx5iQJSGlFKUaBVN6ANoFkdAl80ezhP0qnV9lChoBmgJaA9DCPT8aaO6smJAlIaUUpRoFU3oA2gWR0CXz37EpAlfdX2UKGgGaAloD0MIpRKe0OspZkCUhpRSlGgVTegDaBZHQJfPl+3H7xd1fZQoaAZoCWgPQwgGobyPI6tlQJSGlFKUaBVN6ANoFkdAmAMKxcE/0XV9lChoBmgJaA9DCOtvCcA/JQDAlIaUUpRoFUuKaBZHQJgDbwLE1l51fZQoaAZoCWgPQwgVHcnlPypLQJSGlFKUaBVLZmgWR0CYA+Ed/8VIdX2UKGgGaAloD0MI8wTCTjGbZUCUhpRSlGgVTegDaBZHQJgD66g/Tsp1fZQoaAZoCWgPQwjejQWFQdVfQJSGlFKUaBVN6ANoFkdAmARCuuA7P3V9lChoBmgJaA9DCNmz5zK1S2NAlIaUUpRoFU3oA2gWR0CYBuMlkYoBdX2UKGgGaAloD0MIDTZ1HpWoZUCUhpRSlGgVTegDaBZHQJgJrS3LFGZ1fZQoaAZoCWgPQwgpIVhVL2diQJSGlFKUaBVN6ANoFkdAmAu5SeiBXnV9lChoBmgJaA9DCEWA07v4KGRAlIaUUpRoFU3oA2gWR0CYDNwyZa3adX2UKGgGaAloD0MI9MRztkCqc0CUhpRSlGgVTSsBaBZHQJgP/acqe9V1fZQoaAZoCWgPQwhkIqXZPAJiQJSGlFKUaBVN6ANoFkdAmBB6hxo7FXV9lChoBmgJaA9DCN3sD5Tbck9AlIaUUpRoFUuCaBZHQJgR80m+j/N1fZQoaAZoCWgPQwhxcr9DkS1wQJSGlFKUaBVN/QFoFkdAmBkkj9n9N3V9lChoBmgJaA9DCPyPTIdO8WFAlIaUUpRoFU3oA2gWR0CYGzoSL61tdX2UKGgGaAloD0MIRiQKLWsjZUCUhpRSlGgVTegDaBZHQJgcFVENOM51fZQoaAZoCWgPQwhmvRjKCXBiQJSGlFKUaBVN6ANoFkdAmB56UNayKXV9lChoBmgJaA9DCEgxQKIJlAHAlIaUUpRoFUugaBZHQJggGL2pQ1t1fZQoaAZoCWgPQwhsrwW9t61uQJSGlFKUaBVN7wFoFkdAmCBiCe2/jHV9lChoBmgJaA9DCLYsX5fh3mVAlIaUUpRoFU3oA2gWR0CYIOvqkdmydX2UKGgGaAloD0MIP5EnSVcRZUCUhpRSlGgVTegDaBZHQJghkjB2wFF1fZQoaAZoCWgPQwia7nVSX+VmQJSGlFKUaBVNwQFoFkdAmCSsMNMGo3V9lChoBmgJaA9DCDiB6bRuTGJAlIaUUpRoFU3oA2gWR0CYKLPeYUnHdX2UKGgGaAloD0MIXoHoSZlIN0CUhpRSlGgVS7FoFkdAmFuYKtxMnXV9lChoBmgJaA9DCPLuyFhttV9AlIaUUpRoFU3oA2gWR0CYW+gsbvPUdX2UKGgGaAloD0MIFvcfmQ6QXECUhpRSlGgVTegDaBZHQJhcPskY4yZ1fZQoaAZoCWgPQwjhJM0fU1RmQJSGlFKUaBVN6ANoFkdAmFyx20Re1XV9lChoBmgJaA9DCH78pUX95HFAlIaUUpRoFU1wAWgWR0CYXmfZVXFMdX2UKGgGaAloD0MIQQx07QuWbkCUhpRSlGgVTZMDaBZHQJhezAzpHI91fZQoaAZoCWgPQwiFYFW9/K1VQJSGlFKUaBVN6ANoFkdAmF+BN/OMVHV9lChoBmgJaA9DCJxsA3egMEBAlIaUUpRoFUudaBZHQJhiRkMCtA91fZQoaAZoCWgPQwjNsbyrHhAGQJSGlFKUaBVLp2gWR0CYZW/R3NcGdX2UKGgGaAloD0MIea9amfDGY0CUhpRSlGgVTegDaBZHQJho4TL4etF1fZQoaAZoCWgPQwhJhbGFIINiQJSGlFKUaBVN6ANoFkdAmGlzTa0x/XV9lChoBmgJaA9DCBcs1QW84D9AlIaUUpRoFUupaBZHQJhpqxlg+hZ1fZQoaAZoCWgPQwg0uRgDq69wQJSGlFKUaBVNCgFoFkdAmGqhQJokA3V9lChoBmgJaA9DCACPqFDdRDtAlIaUUpRoFUu1aBZHQJhwdNKyv9t1fZQoaAZoCWgPQwgvFobIafJmQJSGlFKUaBVN6ANoFkdAmHRa5Xlr/XV9lChoBmgJaA9DCE/Pu7GgTmNAlIaUUpRoFU3oA2gWR0CYdVkauOjqdX2UKGgGaAloD0MIYwys4/gYYkCUhpRSlGgVTegDaBZHQJh3+ouPFNt1fZQoaAZoCWgPQwigT+RJ0olkQJSGlFKUaBVN6ANoFkdAmHo09hZyMnV9lChoBmgJaA9DCFkxXB2AmmBAlIaUUpRoFU3oA2gWR0CYetHcDbJwdX2UKGgGaAloD0MIu0bLgZ46Y0CUhpRSlGgVTegDaBZHQJh7lKvmozh1fZQoaAZoCWgPQwirJR3lYF5uQJSGlFKUaBVL9mgWR0CYgIbKifxudX2UKGgGaAloD0MIjGmme91NcECUhpRSlGgVTRgCaBZHQJiBnJ3gUDd1fZQoaAZoCWgPQwgUlnhA2TJIQJSGlFKUaBVLm2gWR0CYgmvysjmkdX2UKGgGaAloD0MILLe0GhJmZUCUhpRSlGgVTegDaBZHQJiDhy7wrlN1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
|
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
"n_epochs": 10,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87865
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad7cc600692460b786e386a94d09ba6f20016c68f461217e7811113a51aaa2a0
|
3 |
size 87865
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9ec6d6198006a01c2b81fc7776e2cb32a2e4685cea720b927fb6cf899b88ce7
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 239.4176795732084, "std_reward": 71.12433553885072, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-09T05:48:34.024327"}
|