Uploading PPO trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +25 -25
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 258.56 +/- 17.29
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc130fff830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc130fff8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc130fff950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc130fff9e0>", "_build": "<function ActorCriticPolicy._build at 0x7fc130fffa70>", "forward": "<function ActorCriticPolicy.forward at 0x7fc130fffb00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc130fffb90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc130fffc20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc130fffcb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc130fffd40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc130fffdd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc131057330>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1659588858.172223, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz9QYk3S8an8YYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAQC5SPhQqsLwKhIE8aRfgugnCH74VaK+7AACAPwAAgD8ARym+o0G9PmpC0j3sdwq/bptcvipkjj0AAAAAAAAAAGZWXDxcuz66JRwWuB4xR7a7Qwq5TRs3NwAAgD8AAIA/E+8CPi7dgLwFklW+VfxfPTpxWz2S/O68AACAPwAAgD/t8FA+oXWjvCTqpTrVpgm5adAVvk0k1LkAAIA/AACAP9AfzD5dlA8/mhZCPoFrD7/GVrg+bByyPQAAAAAAAAAAzWcWPiwa9D6In5k9XMJFv0cw7j0Lt7u7AAAAAAAAAAAATBg8NmGOP415Sz1012G/5WilvWYFy70AAAAAAAAAAAAjDT32AH66WAsMvqscojGkif460YocswAAgD8AAIA/sxxSPpTZ77zcz0c7YJ7XuSSaVb4pI7C6AACAPwAAgD+6xRw+ny1QP7pkYD4HPku/ZR3bPWSeuT0AAAAAAAAAAA1tC75EEbY/giHsvmUZr77xXSS+blVDvgAAAAAAAAAAzbw9vnD3iD5aD4Q+EE0Bv2oyD74uKis+AAAAAAAAAACaOVu8YRyXvOU6ND4ZdCi9e2cPPeIUij0AAIA/AACAP3O9Wj5HdBO9RIMEuwaCqznx64K+4ag6OgAAgD8AAIA/Zooyvnf2Cz6SSZU+zDONvpjxhL0ZTMo8AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVLxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVK2FWWjbP0CUhpRSlIwBbJRLZIwBdJRHQKRCuMtK7I11fZQoaAZoCWgPQwjHEtbGWBdyQJSGlFKUaBVLz2gWR0CkQsZof0VadX2UKGgGaAloD0MI9YJPc/KZbkCUhpRSlGgVS6poFkdApELM4HX2/XV9lChoBmgJaA9DCEjhehRuBHFAlIaUUpRoFUvLaBZHQKRDYXF98Z11fZQoaAZoCWgPQwjJ5qp5jshtQJSGlFKUaBVLlGgWR0CkQ6eaBqbjdX2UKGgGaAloD0MIsDkHzwTxb0CUhpRSlGgVS6JoFkdApEOnzSThYXV9lChoBmgJaA9DCA1QGmrUNXRAlIaUUpRoFUv+aBZHQKREDuxbB451fZQoaAZoCWgPQwj9iF+xBslwQJSGlFKUaBVLrGgWR0CkRDAs052hdX2UKGgGaAloD0MIKLfte9QVckCUhpRSlGgVTQwBaBZHQKREdYKYzBR1fZQoaAZoCWgPQwjI7gIlRUlyQJSGlFKUaBVL42gWR0CkRH0btJFtdX2UKGgGaAloD0MI/x8nTBgbcUCUhpRSlGgVS+NoFkdApER9F4LThHV9lChoBmgJaA9DCF8JpMTuEHRAlIaUUpRoFUvpaBZHQKREiiRnvlV1fZQoaAZoCWgPQwjVyoRfampyQJSGlFKUaBVNLQFoFkdApESQp+c6NnV9lChoBmgJaA9DCPvMWZ/y8W9AlIaUUpRoFUujaBZHQKREqAnUlRh1fZQoaAZoCWgPQwghH/Rs1ptwQJSGlFKUaBVL22gWR0CkRTQf6oETdX2UKGgGaAloD0MIBvGBHf8zcUCUhpRSlGgVTRQBaBZHQKRFVR9gF5h1fZQoaAZoCWgPQwgHeqhtw0JzQJSGlFKUaBVL82gWR0CkRYsJ6Y3OdX2UKGgGaAloD0MI16Avvf1kckCUhpRSlGgVTQoBaBZHQKRFm3cYZVJ1fZQoaAZoCWgPQwj/eRowyDZyQJSGlFKUaBVLkmgWR0CkRimelKsddX2UKGgGaAloD0MIRGlv8AWvckCUhpRSlGgVS7ZoFkdApEZLbQC0W3V9lChoBmgJaA9DCMpuZvQjyW9AlIaUUpRoFUufaBZHQKRGXgKF7D51fZQoaAZoCWgPQwjvHMpQ1WdyQJSGlFKUaBVL8WgWR0CkRni5/b0wdX2UKGgGaAloD0MIeedQhiqtc0CUhpRSlGgVS79oFkdApEat+5OJtXV9lChoBmgJaA9DCGlVSzqKHHFAlIaUUpRoFUvLaBZHQKRHC2VmjCZ1fZQoaAZoCWgPQwjrkJvhhm9xQJSGlFKUaBVNBQFoFkdApEcm7z06HXV9lChoBmgJaA9DCMZNDTSfIXBAlIaUUpRoFUu2aBZHQKRHZsLv1Dl1fZQoaAZoCWgPQwhBSBYwAcdyQJSGlFKUaBVL8GgWR0CkR2ocBEKFdX2UKGgGaAloD0MICvZf56aXS0CUhpRSlGgVS1doFkdApEd1BQemvXV9lChoBmgJaA9DCEXylUAK0HBAlIaUUpRoFUunaBZHQKRHo8lHBk91fZQoaAZoCWgPQwip29lX3rpxQJSGlFKUaBVLumgWR0CkR84zBRAKdX2UKGgGaAloD0MInPurx737cECUhpRSlGgVS6poFkdApEhNeD3/P3V9lChoBmgJaA9DCDfGTniJ3nBAlIaUUpRoFUu1aBZHQKRIm0CRwId1fZQoaAZoCWgPQwiXVkPiXqpwQJSGlFKUaBVLl2gWR0CkSQhzeXRgdX2UKGgGaAloD0MIZMxdS0gnYECUhpRSlGgVTegDaBZHQKRJDI+W4Vh1fZQoaAZoCWgPQwiU3czoh/pwQJSGlFKUaBVLwWgWR0CkSTKgh8pkdX2UKGgGaAloD0MI8G36s9/6ckCUhpRSlGgVS5loFkdApEl2KZUkwHV9lChoBmgJaA9DCGu5MxOMHnNAlIaUUpRoFU0RAWgWR0CkSgOFHrhSdX2UKGgGaAloD0MI9Gvrp79ucUCUhpRSlGgVS8xoFkdApEoVtGd7OXV9lChoBmgJaA9DCO7rwDljknJAlIaUUpRoFUvOaBZHQKRVv+Jgssh1fZQoaAZoCWgPQwgk8Ief/4pxQJSGlFKUaBVLzGgWR0CkVijiwSrYdX2UKGgGaAloD0MIfH+D9qoQc0CUhpRSlGgVTRcBaBZHQKRWfCLuQZJ1fZQoaAZoCWgPQwgE4+DSse1xQJSGlFKUaBVLv2gWR0CkVoNgrpaBdX2UKGgGaAloD0MI0R4vpANuckCUhpRSlGgVTQMBaBZHQKRWvW+XZ5B1fZQoaAZoCWgPQwgTDr3Fw6NxQJSGlFKUaBVL6GgWR0CkV1Xos7MgdX2UKGgGaAloD0MIRE5fz5eYckCUhpRSlGgVS89oFkdApFdp1FH8THV9lChoBmgJaA9DCBNm2v7Vi3BAlIaUUpRoFUvPaBZHQKRXkz3yqdZ1fZQoaAZoCWgPQwhkXdxGQ8dxQJSGlFKUaBVLpGgWR0CkV+UbLlmwdX2UKGgGaAloD0MI5dNjW4Z1c0CUhpRSlGgVS/toFkdApFf8se4kNXV9lChoBmgJaA9DCGNgHcdPoHFAlIaUUpRoFUueaBZHQKRYPBkZrHl1fZQoaAZoCWgPQwhq+1dWGp9qQJSGlFKUaBVN6gJoFkdApFhjqGDcunV9lChoBmgJaA9DCMbE5uOaMXBAlIaUUpRoFUuiaBZHQKRYmj3225R1fZQoaAZoCWgPQwgh6dMq+gRyQJSGlFKUaBVL2GgWR0CkWJnw5NoKdX2UKGgGaAloD0MIfR8OEmKbckCUhpRSlGgVTQ4BaBZHQKRYp+hGpdd1fZQoaAZoCWgPQwgO12oPO+FxQJSGlFKUaBVL6GgWR0CkWLLtmcvvdX2UKGgGaAloD0MI3dCUnb4pckCUhpRSlGgVS7RoFkdApFj/3evZAnV9lChoBmgJaA9DCNBGrpvSJHNAlIaUUpRoFUvaaBZHQKRZOW9lEql1fZQoaAZoCWgPQwjFG5lHvjxxQJSGlFKUaBVLuGgWR0CkWZhOP/70dX2UKGgGaAloD0MITKWfcHZxcECUhpRSlGgVS6BoFkdApFnW74BV/HV9lChoBmgJaA9DCHV4COOnFHFAlIaUUpRoFUvSaBZHQKRaJ5LRKHx1fZQoaAZoCWgPQwi5UWSt4SR0QJSGlFKUaBVLx2gWR0CkWuDO9nK5dX2UKGgGaAloD0MI56kOuZkBckCUhpRSlGgVS7doFkdApFrxd2PkrHV9lChoBmgJaA9DCK+ZfLONKXJAlIaUUpRoFUvxaBZHQKRbCCFK02N1fZQoaAZoCWgPQwjiP91AAeluQJSGlFKUaBVLumgWR0CkWwshHLA6dX2UKGgGaAloD0MIWikEcgkxcUCUhpRSlGgVS41oFkdApFsPkcS5AnV9lChoBmgJaA9DCM78ag5QGnJAlIaUUpRoFUvhaBZHQKRbFU70Wdp1fZQoaAZoCWgPQwjfNehLbxpzQJSGlFKUaBVL62gWR0CkW5V2A5JcdX2UKGgGaAloD0MIKJ1IMFUfY0CUhpRSlGgVTegDaBZHQKRb9pt78el1fZQoaAZoCWgPQwgTtp+McXRxQJSGlFKUaBVLsWgWR0CkXD6dUbT+dX2UKGgGaAloD0MIUKinjwDecUCUhpRSlGgVS8hoFkdApFxKm0mdAnV9lChoBmgJaA9DCLsnDws1fXJAlIaUUpRoFU0AAWgWR0CkXGCj+JgtdX2UKGgGaAloD0MIXRWoxWCUYkCUhpRSlGgVTegDaBZHQKRc78Z1mrd1fZQoaAZoCWgPQwjuXu6T44RxQJSGlFKUaBVLz2gWR0CkXQOZb6gvdX2UKGgGaAloD0MIumbyzTbjckCUhpRSlGgVS7FoFkdApF1w7eVLSXV9lChoBmgJaA9DCPcGX5hMdnFAlIaUUpRoFUvKaBZHQKRdsHuZ1FJ1fZQoaAZoCWgPQwi3ek56XzVzQJSGlFKUaBVLzWgWR0CkXc85CF9KdX2UKGgGaAloD0MIVkrP9JK0Y0CUhpRSlGgVTegDaBZHQKRd5fv4M4N1fZQoaAZoCWgPQwjgKk8gbI9wQJSGlFKUaBVLrmgWR0CkXfCC8OCodX2UKGgGaAloD0MItB8pIsNAckCUhpRSlGgVS5VoFkdApF4ztqpLmXV9lChoBmgJaA9DCIWzW8sklXJAlIaUUpRoFUvtaBZHQKReN/EwWWR1fZQoaAZoCWgPQwgU56ijI35yQJSGlFKUaBVL1mgWR0CkXxo4uK4ydX2UKGgGaAloD0MIhbTGoBMMckCUhpRSlGgVTQcBaBZHQKRfdFtKqXF1fZQoaAZoCWgPQwgpJJnVO3ByQJSGlFKUaBVLxWgWR0CkX5Wm51/2dX2UKGgGaAloD0MIyJbl6zIdckCUhpRSlGgVS+toFkdApGAMU7CBPXV9lChoBmgJaA9DCJ4I4jzch3FAlIaUUpRoFUvGaBZHQKRgFQqI7/51fZQoaAZoCWgPQwiZ8iGoGl9xQJSGlFKUaBVLrWgWR0CkYDns9jgAdX2UKGgGaAloD0MIt7jGZ7JRc0CUhpRSlGgVTSQBaBZHQKRgSqFyq+91fZQoaAZoCWgPQwgVcTrJVqFwQJSGlFKUaBVLpmgWR0CkYHugHu7ZdX2UKGgGaAloD0MIf4RhwJJ4cUCUhpRSlGgVS9loFkdApGDdcfNiY3V9lChoBmgJaA9DCBCyLJi4RHJAlIaUUpRoFUvxaBZHQKRg7D5TIeZ1fZQoaAZoCWgPQwiP4hx1tF9wQJSGlFKUaBVLj2gWR0CkYRPaL4vfdX2UKGgGaAloD0MIkncOZei9cECUhpRSlGgVS9poFkdApGErMgU1ynV9lChoBmgJaA9DCHr83qY/dm9AlIaUUpRoFUufaBZHQKRhnvZyuIR1fZQoaAZoCWgPQwjPu7GgMP1uQJSGlFKUaBVLn2gWR0CkYbuZTho/dX2UKGgGaAloD0MIOQ8nMB3FcUCUhpRSlGgVTUkBaBZHQKRiLustCiR1fZQoaAZoCWgPQwghdNAl3CtxQJSGlFKUaBVLoWgWR0CkYjOKfnOjdX2UKGgGaAloD0MIUiegibBpcECUhpRSlGgVS5NoFkdApGI3Jgb6xnV9lChoBmgJaA9DCMjT8gNXyXFAlIaUUpRoFUugaBZHQKRiUjgQ6IZ1fZQoaAZoCWgPQwjEYP4KWYFxQJSGlFKUaBVLwGgWR0CkYpHVPN3XdX2UKGgGaAloD0MIbAn5oGdbRkCUhpRSlGgVS4JoFkdApGLba24NJHV9lChoBmgJaA9DCMlWl1OCXnFAlIaUUpRoFUu9aBZHQKRi91U2kzp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVXwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX2ZpbGxfZnVuY3Rpb26Uk5QoaACMD19tYWtlX3NrZWxfZnVuY5STlGgAjA1fYnVpbHRpbl90eXBllJOUjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlEsBfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdYeUUpR9lCiMB2dsb2JhbHOUfZSMCGRlZmF1bHRzlE6MBGRpY3SUfZSMDmNsb3N1cmVfdmFsdWVzlF2URz/JmZmZmZmaYYwGbW9kdWxllGgZjARuYW1llGgPjANkb2OUTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC2Fubm90YXRpb25zlH2UjAhxdWFsbmFtZZSMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjAprd2RlZmF1bHRzlE51dFIu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4fe50d8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4fe50d950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4fe50d9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4fe50da70>", "_build": "<function ActorCriticPolicy._build at 0x7fd4fe50db00>", "forward": "<function ActorCriticPolicy.forward at 0x7fd4fe50db90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4fe50dc20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd4fe50dcb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4fe50dd40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4fe50ddd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4fe50de60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd4fe558a80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1660022492.559631, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALpPLb72WXI7CErQOHIlIbby8h69evD3twAAgD8AAIA/sxy8vSFYiD/TmZG+jMUzv5CMtb3KuPi8AAAAAAAAAAAA/Gi9KbgfukUDPjZwo5o1yuFUO9Ysf7UAAIA/AACAP3pAHD6p2Da8fgY0O+AfRbkA15u9HnBtugAAgD8AAIA/GqmgPQqXf7nGDOG4q6MJtNjJL7tsLwM4AACAPwAAgD+aFBs+L94LPrqtRLwpZlC+o2xiOzbL7bwAAAAAAAAAALN70D0EAUM+kG5Dvem7VL6zzwW9mvKRvAAAAAAAAAAAZo34PFIgurmOuks8HrmltgZbqDqQCp21AACAPwAAgD8zY1a9KdQkuiFSOboxQsA1qcsoO8I5VjkAAIA/AACAP6ZhDz64CbK7CqSDOgr6ALilFwO9qU+kuQAAgD8AAIA/ZvYXPUgnirrntrU70K4fOKNK4TpNqZE1AACAPwAAgD/Nc/q8AhueP3YLJb5W7BG/LZoYvR5/4DsAAAAAAAAAALbkgD5Spss6TW3eOjJrqjefUJc8lwoAugAAgD8AAIA/Zq45u+zpz7kuXIS6qyPPtRniRzuU4Zo5AACAPwAAgD/miAi9SLnyOfIoqDN11v+vB92TONs4vLMAAIA/AACAP6bvzj0fjfG5DAaOt7OHibJLjaY6BnijNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4e6s3faVYkCUhpRSlIwBbJRN6AOMAXSUR0B+zHkwN9YwdX2UKGgGaAloD0MIt/EnKhvgXUCUhpRSlGgVTegDaBZHQH7QxkI5YHR1fZQoaAZoCWgPQwi5bHTOz/VgQJSGlFKUaBVN6ANoFkdAfuSBFuvU0HV9lChoBmgJaA9DCGwldJdEQWNAlIaUUpRoFU3oA2gWR0B+86Eh7mdRdX2UKGgGaAloD0MIiQeUTTm7ZECUhpRSlGgVTegDaBZHQH8NHZkCmuV1fZQoaAZoCWgPQwg7i96pAGhjQJSGlFKUaBVN6ANoFkdAfy+ZOi35OHV9lChoBmgJaA9DCJBOXfmssWJAlIaUUpRoFU3oA2gWR0B/Qr5dnkDIdX2UKGgGaAloD0MIHv6arFFBXUCUhpRSlGgVTegDaBZHQH9F/WH1vl51fZQoaAZoCWgPQwiCWDZzSH4zwJSGlFKUaBVLbWgWR0B/TL6P8yeqdX2UKGgGaAloD0MIXcXiN4VTYUCUhpRSlGgVTegDaBZHQH9QkjcEeQx1fZQoaAZoCWgPQwjxRXu8UB9wQJSGlFKUaBVNGgFoFkdAf1XpMHryD3V9lChoBmgJaA9DCPKVQErsKGFAlIaUUpRoFU3oA2gWR0B/WzF5v99/dX2UKGgGaAloD0MIhxiveVXkZkCUhpRSlGgVTegDaBZHQH9dKoAGSp11fZQoaAZoCWgPQwgzbmqg+QFhQJSGlFKUaBVN6ANoFkdAf3XHvttygnV9lChoBmgJaA9DCMsSnWWWO2BAlIaUUpRoFU3oA2gWR0B/77Bl+VkddX2UKGgGaAloD0MI+yE2WLgPZECUhpRSlGgVTegDaBZHQH/55OJtSAJ1fZQoaAZoCWgPQwgCKEaWTOBjQJSGlFKUaBVN6ANoFkdAf/odgv114nV9lChoBmgJaA9DCNXPm4rUCWJAlIaUUpRoFU3oA2gWR0CABqqoZQ54dX2UKGgGaAloD0MIPZ6WH7i5ZkCUhpRSlGgVTegDaBZHQIALNPP9kz51fZQoaAZoCWgPQwimRBK9DGhiQJSGlFKUaBVN6ANoFkdAgA2hC+lCTnV9lChoBmgJaA9DCF0Y6UXtv2FAlIaUUpRoFU3oA2gWR0CAF9jH4oJBdX2UKGgGaAloD0MIg/jAjv/iX0CUhpRSlGgVTegDaBZHQIAfmY2Kl551fZQoaAZoCWgPQwhzvW2mQvZmQJSGlFKUaBVNJwNoFkdAgDPz7/GVA3V9lChoBmgJaA9DCL5nJEKjW2BAlIaUUpRoFU3oA2gWR0CARcMZxaPkdX2UKGgGaAloD0MIRwINNnVhZECUhpRSlGgVTegDaBZHQIBHOZuyeI51fZQoaAZoCWgPQwgT8kHP5uRmQJSGlFKUaBVN6ANoFkdAgEohy8zyjHV9lChoBmgJaA9DCE6bcRqiqFBAlIaUUpRoFUu3aBZHQIBKrdrO7g91fZQoaAZoCWgPQwgAcy1agIxkQJSGlFKUaBVN6ANoFkdAgE4+23KB/nV9lChoBmgJaA9DCIpW7gVmymNAlIaUUpRoFU3oA2gWR0CAUJBacI7edX2UKGgGaAloD0MIbVM8LqrDWkCUhpRSlGgVTegDaBZHQIBRcqBmPHV1fZQoaAZoCWgPQwgk7xzKUPZgQJSGlFKUaBVN6ANoFkdAgFwXX7Lt/nV9lChoBmgJaA9DCGb1DrfDAGVAlIaUUpRoFU3oA2gWR0CAmAURFqi5dX2UKGgGaAloD0MIDypxHeMPZkCUhpRSlGgVTegDaBZHQICddf5ULlV1fZQoaAZoCWgPQwiY++QoQK5iQJSGlFKUaBVN6ANoFkdAgJ2lOwgTy3V9lChoBmgJaA9DCNBCAkYXh2JAlIaUUpRoFU3oA2gWR0CAq3RWtEG8dX2UKGgGaAloD0MI1siutIxdX0CUhpRSlGgVTegDaBZHQICwBr56+nJ1fZQoaAZoCWgPQwhLdQEvs0dlQJSGlFKUaBVN6ANoFkdAgLJn+6y0KXV9lChoBmgJaA9DCC1CsRU0/GVAlIaUUpRoFU3oA2gWR0CAvM35vcagdX2UKGgGaAloD0MIWK1M+CWrZ0CUhpRSlGgVTegDaBZHQIDFL4SHuZ11fZQoaAZoCWgPQwg0ZhL1AiNmQJSGlFKUaBVN6ANoFkdAgOpDMvAXVXV9lChoBmgJaA9DCMCSq1h8iWJAlIaUUpRoFU3oA2gWR0CA67rO7g89dX2UKGgGaAloD0MIr0Ffenu6YkCUhpRSlGgVTegDaBZHQIDu2Jiy6c11fZQoaAZoCWgPQwjNOuP74hVkQJSGlFKUaBVN6ANoFkdAgO9l05lvqHV9lChoBmgJaA9DCAgddAmHRGRAlIaUUpRoFU3oA2gWR0CA8rvAoG6gdX2UKGgGaAloD0MIK702GyvDZUCUhpRSlGgVTegDaBZHQID1GHUMG5d1fZQoaAZoCWgPQwh6GFqdHGNlQJSGlFKUaBVN6ANoFkdAgPYNnoPkJnV9lChoBmgJaA9DCMuFyr+WimZAlIaUUpRoFU3oA2gWR0CBAJvlU6xPdX2UKGgGaAloD0MIIHwo0ZIfY0CUhpRSlGgVTegDaBZHQIE8Kg2606Z1fZQoaAZoCWgPQwgAjdKlf5pjQJSGlFKUaBVN6ANoFkdAgUEzreIl+nV9lChoBmgJaA9DCKuTMxR3dGNAlIaUUpRoFU3oA2gWR0CBQVLM9r44dX2UKGgGaAloD0MILQsm/qiLYkCUhpRSlGgVTegDaBZHQIFK6zHCGet1fZQoaAZoCWgPQwhnZfuQN7VhQJSGlFKUaBVN6ANoFkdAgU9xpDeCTXV9lChoBmgJaA9DCHbfMTz2QmBAlIaUUpRoFU3oA2gWR0CBUfUQ04zadX2UKGgGaAloD0MI8gwa+iceTkCUhpRSlGgVS8xoFkdAgVjk9t/FznV9lChoBmgJaA9DCPvrFRbcEVpAlIaUUpRoFU3oA2gWR0CBXPKnNxEOdX2UKGgGaAloD0MIjq1nCEdHZECUhpRSlGgVTegDaBZHQIFk0EcKgI11fZQoaAZoCWgPQwhViEfi5aRnQJSGlFKUaBVN6ANoFkdAgYxR5kbxVnV9lChoBmgJaA9DCKfOo+L/MGVAlIaUUpRoFU3oA2gWR0CBjfA1vVEvdX2UKGgGaAloD0MI9FMcB15EZECUhpRSlGgVTegDaBZHQIGRKg9Net11fZQoaAZoCWgPQwg661OOSf5iQJSGlFKUaBVN6ANoFkdAgZHFFUhmoXV9lChoBmgJaA9DCOGVJM/1rGJAlIaUUpRoFU3oA2gWR0CBlTleWv8qdX2UKGgGaAloD0MIkdRCyeQsYkCUhpRSlGgVTegDaBZHQIGXkQqZtvZ1fZQoaAZoCWgPQwizeLEwRCBfQJSGlFKUaBVN6ANoFkdAgZiKRMewLXV9lChoBmgJaA9DCEhPkUPEoT9AlIaUUpRoFUvMaBZHQIGhtfzBhx51fZQoaAZoCWgPQwg+6xotBzJgQJSGlFKUaBVN6ANoFkdAgaNHJLdvbXV9lChoBmgJaA9DCFVq9kArkWVAlIaUUpRoFU3oA2gWR0CB3g0kWykcdX2UKGgGaAloD0MIvXDnwkhhZkCUhpRSlGgVTegDaBZHQIHihStNi6R1fZQoaAZoCWgPQwiq86j4v7dlQJSGlFKUaBVN6ANoFkdAgesRlHz6J3V9lChoBmgJaA9DCJwYkpOJP11AlIaUUpRoFU3oA2gWR0CB7xrIo3JgdX2UKGgGaAloD0MIn8iTpOt7ZUCUhpRSlGgVTegDaBZHQIHxcFbFCLN1fZQoaAZoCWgPQwhgAOFDiURhQJSGlFKUaBVN6ANoFkdAgfelvAGjbnV9lChoBmgJaA9DCEKUL2ihaWpAlIaUUpRoFU3oA2gWR0CB+w6vJRwZdX2UKGgGaAloD0MI5lyKq8rMZUCUhpRSlGgVTegDaBZHQIICCDkELYx1fZQoaAZoCWgPQwgw8UdR51plQJSGlFKUaBVN6ANoFkdAgik5of0VanV9lChoBmgJaA9DCEaU9gZf3WNAlIaUUpRoFU3oA2gWR0CCLJJxNqQBdX2UKGgGaAloD0MINum2RC5RaECUhpRSlGgVTegDaBZHQIItMg0TDfp1fZQoaAZoCWgPQwiSW5NuS8xiQJSGlFKUaBVN6ANoFkdAgjD3sgMc63V9lChoBmgJaA9DCNaNd0dGz2hAlIaUUpRoFU3oA2gWR0CCM2qd6LOzdX2UKGgGaAloD0MIj6hQ3dxuZECUhpRSlGgVTegDaBZHQII0W8qWkad1fZQoaAZoCWgPQwg2c0hqoSdkQJSGlFKUaBVN6ANoFkdAgj3oNd7fHnV9lChoBmgJaA9DCMH/VrJjXmZAlIaUUpRoFU3oA2gWR0CCP33VTaTPdX2UKGgGaAloD0MIsJC5MqjxZ0CUhpRSlGgVTegDaBZHQIJ6zKNhmXh1fZQoaAZoCWgPQwh9zt2uFxtiQJSGlFKUaBVN6ANoFkdAgn+VjZtelnV9lChoBmgJaA9DCFN1j2yutWdAlIaUUpRoFU3oA2gWR0CCiNsVLzwudX2UKGgGaAloD0MI2qokso/LY0CUhpRSlGgVTegDaBZHQIKNgGW2PT51fZQoaAZoCWgPQwgxtDo5Q6NlQJSGlFKUaBVN6ANoFkdAgpAT0Yj0MHV9lChoBmgJaA9DCNldoKTARGRAlIaUUpRoFU3oA2gWR0CClzdxhlUZdX2UKGgGaAloD0MIL9y5MNIXY0CUhpRSlGgVTegDaBZHQIKa+T/yXld1fZQoaAZoCWgPQwg3UOCdfI5mQJSGlFKUaBVN6ANoFkdAgqJWFN+LFXV9lChoBmgJaA9DCDNrKSBtc2ZAlIaUUpRoFU3oA2gWR0CCyvEVFhG6dX2UKGgGaAloD0MINSpwso07bUCUhpRSlGgVTaYBaBZHQILOTDl5nlJ1fZQoaAZoCWgPQwjYRdEDn0tnQJSGlFKUaBVN6ANoFkdAgs5sk6cRUXV9lChoBmgJaA9DCJQT7SokN2RAlIaUUpRoFU3oA2gWR0CCzweVcD8tdX2UKGgGaAloD0MIcvikE4nBakCUhpRSlGgVTcADaBZHQILQtcGC7K91fZQoaAZoCWgPQwhVv9L58JZgQJSGlFKUaBVN6ANoFkdAgtJZQP7N0XV9lChoBmgJaA9DCBPXMa64gWRAlIaUUpRoFU3oA2gWR0CC1Wi7CiyqdX2UKGgGaAloD0MIXMr5Yu8KZECUhpRSlGgVTegDaBZHQILeI+hXbM51fZQoaAZoCWgPQwhSKXY0juZjQJSGlFKUaBVN6ANoFkdAgt+WSt/4I3V9lChoBmgJaA9DCPJ4Wn7gajNAlIaUUpRoFUvYaBZHQILpVJSR8tx1fZQoaAZoCWgPQwgZNzXQ/PhmQJSGlFKUaBVN6ANoFkdAgup9t2s7uHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:476e78f8f70c98f8bb567d6f90a5db7da6a73f220fdcf6d6aa0230e350509479
|
3 |
+
size 147147
|
ppo-LunarLander-v2/data
CHANGED
@@ -1,28 +1,28 @@
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
-
":serialized:": "
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
-
":serialized:": "
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
@@ -35,32 +35,32 @@
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
-
":serialized:": "
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.001,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
@@ -69,13 +69,13 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
-
":serialized:": "
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.98,
|
@@ -86,7 +86,7 @@
|
|
86 |
"n_epochs": 10,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
1 |
{
|
2 |
"policy_class": {
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd4fe50d8c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd4fe50d950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd4fe50d9e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd4fe50da70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd4fe50db00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd4fe50db90>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd4fe50dc20>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd4fe50dcb0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd4fe50dd40>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd4fe50ddd0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd4fe50de60>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd4fe558a80>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
23 |
"observation_space": {
|
24 |
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
"dtype": "float32",
|
27 |
"_shape": [
|
28 |
8
|
|
|
35 |
},
|
36 |
"action_space": {
|
37 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
"n": 4,
|
40 |
"_shape": [],
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1660022492.559631,
|
51 |
"learning_rate": 0.001,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALpPLb72WXI7CErQOHIlIbby8h69evD3twAAgD8AAIA/sxy8vSFYiD/TmZG+jMUzv5CMtb3KuPi8AAAAAAAAAAAA/Gi9KbgfukUDPjZwo5o1yuFUO9Ysf7UAAIA/AACAP3pAHD6p2Da8fgY0O+AfRbkA15u9HnBtugAAgD8AAIA/GqmgPQqXf7nGDOG4q6MJtNjJL7tsLwM4AACAPwAAgD+aFBs+L94LPrqtRLwpZlC+o2xiOzbL7bwAAAAAAAAAALN70D0EAUM+kG5Dvem7VL6zzwW9mvKRvAAAAAAAAAAAZo34PFIgurmOuks8HrmltgZbqDqQCp21AACAPwAAgD8zY1a9KdQkuiFSOboxQsA1qcsoO8I5VjkAAIA/AACAP6ZhDz64CbK7CqSDOgr6ALilFwO9qU+kuQAAgD8AAIA/ZvYXPUgnirrntrU70K4fOKNK4TpNqZE1AACAPwAAgD/Nc/q8AhueP3YLJb5W7BG/LZoYvR5/4DsAAAAAAAAAALbkgD5Spss6TW3eOjJrqjefUJc8lwoAugAAgD8AAIA/Zq45u+zpz7kuXIS6qyPPtRniRzuU4Zo5AACAPwAAgD/miAi9SLnyOfIoqDN11v+vB92TONs4vLMAAIA/AACAP6bvzj0fjfG5DAaOt7OHibJLjaY6BnijNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4e6s3faVYkCUhpRSlIwBbJRN6AOMAXSUR0B+zHkwN9YwdX2UKGgGaAloD0MIt/EnKhvgXUCUhpRSlGgVTegDaBZHQH7QxkI5YHR1fZQoaAZoCWgPQwi5bHTOz/VgQJSGlFKUaBVN6ANoFkdAfuSBFuvU0HV9lChoBmgJaA9DCGwldJdEQWNAlIaUUpRoFU3oA2gWR0B+86Eh7mdRdX2UKGgGaAloD0MIiQeUTTm7ZECUhpRSlGgVTegDaBZHQH8NHZkCmuV1fZQoaAZoCWgPQwg7i96pAGhjQJSGlFKUaBVN6ANoFkdAfy+ZOi35OHV9lChoBmgJaA9DCJBOXfmssWJAlIaUUpRoFU3oA2gWR0B/Qr5dnkDIdX2UKGgGaAloD0MIHv6arFFBXUCUhpRSlGgVTegDaBZHQH9F/WH1vl51fZQoaAZoCWgPQwiCWDZzSH4zwJSGlFKUaBVLbWgWR0B/TL6P8yeqdX2UKGgGaAloD0MIXcXiN4VTYUCUhpRSlGgVTegDaBZHQH9QkjcEeQx1fZQoaAZoCWgPQwjxRXu8UB9wQJSGlFKUaBVNGgFoFkdAf1XpMHryD3V9lChoBmgJaA9DCPKVQErsKGFAlIaUUpRoFU3oA2gWR0B/WzF5v99/dX2UKGgGaAloD0MIhxiveVXkZkCUhpRSlGgVTegDaBZHQH9dKoAGSp11fZQoaAZoCWgPQwgzbmqg+QFhQJSGlFKUaBVN6ANoFkdAf3XHvttygnV9lChoBmgJaA9DCMsSnWWWO2BAlIaUUpRoFU3oA2gWR0B/77Bl+VkddX2UKGgGaAloD0MI+yE2WLgPZECUhpRSlGgVTegDaBZHQH/55OJtSAJ1fZQoaAZoCWgPQwgCKEaWTOBjQJSGlFKUaBVN6ANoFkdAf/odgv114nV9lChoBmgJaA9DCNXPm4rUCWJAlIaUUpRoFU3oA2gWR0CABqqoZQ54dX2UKGgGaAloD0MIPZ6WH7i5ZkCUhpRSlGgVTegDaBZHQIALNPP9kz51fZQoaAZoCWgPQwimRBK9DGhiQJSGlFKUaBVN6ANoFkdAgA2hC+lCTnV9lChoBmgJaA9DCF0Y6UXtv2FAlIaUUpRoFU3oA2gWR0CAF9jH4oJBdX2UKGgGaAloD0MIg/jAjv/iX0CUhpRSlGgVTegDaBZHQIAfmY2Kl551fZQoaAZoCWgPQwhzvW2mQvZmQJSGlFKUaBVNJwNoFkdAgDPz7/GVA3V9lChoBmgJaA9DCL5nJEKjW2BAlIaUUpRoFU3oA2gWR0CARcMZxaPkdX2UKGgGaAloD0MIRwINNnVhZECUhpRSlGgVTegDaBZHQIBHOZuyeI51fZQoaAZoCWgPQwgT8kHP5uRmQJSGlFKUaBVN6ANoFkdAgEohy8zyjHV9lChoBmgJaA9DCE6bcRqiqFBAlIaUUpRoFUu3aBZHQIBKrdrO7g91fZQoaAZoCWgPQwgAcy1agIxkQJSGlFKUaBVN6ANoFkdAgE4+23KB/nV9lChoBmgJaA9DCIpW7gVmymNAlIaUUpRoFU3oA2gWR0CAUJBacI7edX2UKGgGaAloD0MIbVM8LqrDWkCUhpRSlGgVTegDaBZHQIBRcqBmPHV1fZQoaAZoCWgPQwgk7xzKUPZgQJSGlFKUaBVN6ANoFkdAgFwXX7Lt/nV9lChoBmgJaA9DCGb1DrfDAGVAlIaUUpRoFU3oA2gWR0CAmAURFqi5dX2UKGgGaAloD0MIDypxHeMPZkCUhpRSlGgVTegDaBZHQICddf5ULlV1fZQoaAZoCWgPQwiY++QoQK5iQJSGlFKUaBVN6ANoFkdAgJ2lOwgTy3V9lChoBmgJaA9DCNBCAkYXh2JAlIaUUpRoFU3oA2gWR0CAq3RWtEG8dX2UKGgGaAloD0MI1siutIxdX0CUhpRSlGgVTegDaBZHQICwBr56+nJ1fZQoaAZoCWgPQwhLdQEvs0dlQJSGlFKUaBVN6ANoFkdAgLJn+6y0KXV9lChoBmgJaA9DCC1CsRU0/GVAlIaUUpRoFU3oA2gWR0CAvM35vcagdX2UKGgGaAloD0MIWK1M+CWrZ0CUhpRSlGgVTegDaBZHQIDFL4SHuZ11fZQoaAZoCWgPQwg0ZhL1AiNmQJSGlFKUaBVN6ANoFkdAgOpDMvAXVXV9lChoBmgJaA9DCMCSq1h8iWJAlIaUUpRoFU3oA2gWR0CA67rO7g89dX2UKGgGaAloD0MIr0Ffenu6YkCUhpRSlGgVTegDaBZHQIDu2Jiy6c11fZQoaAZoCWgPQwjNOuP74hVkQJSGlFKUaBVN6ANoFkdAgO9l05lvqHV9lChoBmgJaA9DCAgddAmHRGRAlIaUUpRoFU3oA2gWR0CA8rvAoG6gdX2UKGgGaAloD0MIK702GyvDZUCUhpRSlGgVTegDaBZHQID1GHUMG5d1fZQoaAZoCWgPQwh6GFqdHGNlQJSGlFKUaBVN6ANoFkdAgPYNnoPkJnV9lChoBmgJaA9DCMuFyr+WimZAlIaUUpRoFU3oA2gWR0CBAJvlU6xPdX2UKGgGaAloD0MIIHwo0ZIfY0CUhpRSlGgVTegDaBZHQIE8Kg2606Z1fZQoaAZoCWgPQwgAjdKlf5pjQJSGlFKUaBVN6ANoFkdAgUEzreIl+nV9lChoBmgJaA9DCKuTMxR3dGNAlIaUUpRoFU3oA2gWR0CBQVLM9r44dX2UKGgGaAloD0MILQsm/qiLYkCUhpRSlGgVTegDaBZHQIFK6zHCGet1fZQoaAZoCWgPQwhnZfuQN7VhQJSGlFKUaBVN6ANoFkdAgU9xpDeCTXV9lChoBmgJaA9DCHbfMTz2QmBAlIaUUpRoFU3oA2gWR0CBUfUQ04zadX2UKGgGaAloD0MI8gwa+iceTkCUhpRSlGgVS8xoFkdAgVjk9t/FznV9lChoBmgJaA9DCPvrFRbcEVpAlIaUUpRoFU3oA2gWR0CBXPKnNxEOdX2UKGgGaAloD0MIjq1nCEdHZECUhpRSlGgVTegDaBZHQIFk0EcKgI11fZQoaAZoCWgPQwhViEfi5aRnQJSGlFKUaBVN6ANoFkdAgYxR5kbxVnV9lChoBmgJaA9DCKfOo+L/MGVAlIaUUpRoFU3oA2gWR0CBjfA1vVEvdX2UKGgGaAloD0MI9FMcB15EZECUhpRSlGgVTegDaBZHQIGRKg9Net11fZQoaAZoCWgPQwg661OOSf5iQJSGlFKUaBVN6ANoFkdAgZHFFUhmoXV9lChoBmgJaA9DCOGVJM/1rGJAlIaUUpRoFU3oA2gWR0CBlTleWv8qdX2UKGgGaAloD0MIkdRCyeQsYkCUhpRSlGgVTegDaBZHQIGXkQqZtvZ1fZQoaAZoCWgPQwizeLEwRCBfQJSGlFKUaBVN6ANoFkdAgZiKRMewLXV9lChoBmgJaA9DCEhPkUPEoT9AlIaUUpRoFUvMaBZHQIGhtfzBhx51fZQoaAZoCWgPQwg+6xotBzJgQJSGlFKUaBVN6ANoFkdAgaNHJLdvbXV9lChoBmgJaA9DCFVq9kArkWVAlIaUUpRoFU3oA2gWR0CB3g0kWykcdX2UKGgGaAloD0MIvXDnwkhhZkCUhpRSlGgVTegDaBZHQIHihStNi6R1fZQoaAZoCWgPQwiq86j4v7dlQJSGlFKUaBVN6ANoFkdAgesRlHz6J3V9lChoBmgJaA9DCJwYkpOJP11AlIaUUpRoFU3oA2gWR0CB7xrIo3JgdX2UKGgGaAloD0MIn8iTpOt7ZUCUhpRSlGgVTegDaBZHQIHxcFbFCLN1fZQoaAZoCWgPQwhgAOFDiURhQJSGlFKUaBVN6ANoFkdAgfelvAGjbnV9lChoBmgJaA9DCEKUL2ihaWpAlIaUUpRoFU3oA2gWR0CB+w6vJRwZdX2UKGgGaAloD0MI5lyKq8rMZUCUhpRSlGgVTegDaBZHQIICCDkELYx1fZQoaAZoCWgPQwgw8UdR51plQJSGlFKUaBVN6ANoFkdAgik5of0VanV9lChoBmgJaA9DCEaU9gZf3WNAlIaUUpRoFU3oA2gWR0CCLJJxNqQBdX2UKGgGaAloD0MINum2RC5RaECUhpRSlGgVTegDaBZHQIItMg0TDfp1fZQoaAZoCWgPQwiSW5NuS8xiQJSGlFKUaBVN6ANoFkdAgjD3sgMc63V9lChoBmgJaA9DCNaNd0dGz2hAlIaUUpRoFU3oA2gWR0CCM2qd6LOzdX2UKGgGaAloD0MIj6hQ3dxuZECUhpRSlGgVTegDaBZHQII0W8qWkad1fZQoaAZoCWgPQwg2c0hqoSdkQJSGlFKUaBVN6ANoFkdAgj3oNd7fHnV9lChoBmgJaA9DCMH/VrJjXmZAlIaUUpRoFU3oA2gWR0CCP33VTaTPdX2UKGgGaAloD0MIsJC5MqjxZ0CUhpRSlGgVTegDaBZHQIJ6zKNhmXh1fZQoaAZoCWgPQwh9zt2uFxtiQJSGlFKUaBVN6ANoFkdAgn+VjZtelnV9lChoBmgJaA9DCFN1j2yutWdAlIaUUpRoFU3oA2gWR0CCiNsVLzwudX2UKGgGaAloD0MI2qokso/LY0CUhpRSlGgVTegDaBZHQIKNgGW2PT51fZQoaAZoCWgPQwgxtDo5Q6NlQJSGlFKUaBVN6ANoFkdAgpAT0Yj0MHV9lChoBmgJaA9DCNldoKTARGRAlIaUUpRoFU3oA2gWR0CClzdxhlUZdX2UKGgGaAloD0MIL9y5MNIXY0CUhpRSlGgVTegDaBZHQIKa+T/yXld1fZQoaAZoCWgPQwg3UOCdfI5mQJSGlFKUaBVN6ANoFkdAgqJWFN+LFXV9lChoBmgJaA9DCDNrKSBtc2ZAlIaUUpRoFU3oA2gWR0CCyvEVFhG6dX2UKGgGaAloD0MINSpwso07bUCUhpRSlGgVTaYBaBZHQILOTDl5nlJ1fZQoaAZoCWgPQwjYRdEDn0tnQJSGlFKUaBVN6ANoFkdAgs5sk6cRUXV9lChoBmgJaA9DCJQT7SokN2RAlIaUUpRoFU3oA2gWR0CCzweVcD8tdX2UKGgGaAloD0MIcvikE4nBakCUhpRSlGgVTcADaBZHQILQtcGC7K91fZQoaAZoCWgPQwhVv9L58JZgQJSGlFKUaBVN6ANoFkdAgtJZQP7N0XV9lChoBmgJaA9DCBPXMa64gWRAlIaUUpRoFU3oA2gWR0CC1Wi7CiyqdX2UKGgGaAloD0MIXMr5Yu8KZECUhpRSlGgVTegDaBZHQILeI+hXbM51fZQoaAZoCWgPQwhSKXY0juZjQJSGlFKUaBVN6ANoFkdAgt+WSt/4I3V9lChoBmgJaA9DCPJ4Wn7gajNAlIaUUpRoFUvYaBZHQILpVJSR8tx1fZQoaAZoCWgPQwgZNzXQ/PhmQJSGlFKUaBVN6ANoFkdAgup9t2s7uHVlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 310,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.98,
|
|
|
86 |
"n_epochs": 10,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87865
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6252b92ef0330a063497add76448cab73b30f754061a46e86433e05b3d72437b
|
3 |
size 87865
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f13d5190453d443221f429b5cdb345bbcf816002a31ebc8fc88c89fba0f37a69
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 258.5582483115538, "std_reward": 17.294280306188185, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-09T05:32:28.949974"}
|